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A B S T R A C T

The implementation feasibility of control algorithms over very large-scale networks calls for hard constraints
regarding communication, computational, and memory requirements. In this paper, the decentralized receding
horizon control problem for very large-scale networks of dynamically decoupled systems with a common,
possibly time-varying, control objective is addressed. Each system is assumed to be modeled by linear time-
varying dynamics, which can be leveraged to approximate nonlinear systems about successive points of
operation. A distributed and decentralized receding horizon control solution is put forward, which: (i) takes
communication delays into account; (ii) allows local communication exclusively; and (iii) whose computational
and memory requirements in each computational unit do not scale with the dimension of the network. The
scalability of the proposed solution enables emerging very large-scale applications of swarm robotics and
networked control. This approach is applied to the orbit control problem of low Earth orbit mega-constellations,
featuring high-fidelity numerical simulations for the Starlink mega-constellation.
1. Introduction

1.1. Motivation

The interest in decentralized control and estimation has been grow-
ing over the past decades since it enables technology that relies on
large-scale networks of coupled systems. The well-known classical con-
trol solutions are centralized, which rely on computations on a single
node and all-to-all communication between systems. The sheer commu-
nication and computational requirements of these solutions render its
implementation infeasible as the dimension of the network increases.
The emergence of applications in swarm robotics, such as unmanned
aircraft formation flight (Bereg et al., 2015; Thien & Kim, 2018),
unmanned underwater formations (Viegas et al., 2012; Yuan et al.,
2017) and satellite formation control (Ivanov et al., 2019; Russell Car-
penter, 2002), as well as of large-scale networks of spatially scattered
processes such as irrigation networks (Li, 2014; Nguyen et al., 2017)
and power distribution networks (Sampathirao et al., 2021; Singh et al.,
2016; Vlahakis et al., 2019) have accelerated the demand for efficient
decentralized algorithms.

The decentralized control and estimation problems can be formu-
lated as optimization problems subject to constraints that arise from
the decentralized nature of the network. Despite the large research
effort in this field, it remains an open problem even for linear time-
invariant (LTI) systems due to its intractability (Blondel & Tsitsiklis,
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2000). On top of that, a significant portion of the envisioned large-scale
applications have underlying nonlinear dynamics, for which befitting
solutions are even scarcer. Oftentimes, linearization techniques are
employed, approximating the dynamics of the nonlinear system over
successive operating points (Marinescu, 2010). This approach yields a
more tractable linear time-varying (LTV) system for which decentral-
ized control strategies have to be designed. On one hand, solutions for
time-invariant dynamics can be synthesized offline. On the other hand,
when it comes to the implementation of time-varying decentralized
algorithms over very large-scale networks, more challenges are brought
to light in addition to the intricacies of the decentralized problem.
In fact, the time-varying nature of the problem calls for real-time
synthesis, which requires additional communication, computational,
and memory requirements. Furthermore, these resources are often very
limited, which poses heavy constraints to the design problem. In fact,
the solutions must cope with these limiting factors by distributing the
load of the overall algorithm evenly among the systems that make up
the network. For these reasons, a distributed and decentralized solution
ought to be sought.

1.2. Scope

The focus of this paper is to design a decentralized and distributed
receding horizon control (RHC) solution for very large-scale networks
967-0661/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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of dynamically decoupled systems with a common control objective.
The problem is formulated considering decoupled LTV dynamics for
each system and coupled LTV tracking output dynamics expressed in
a generic, possibly time-varying, topology to model the network-wise
control objective. Severe design constraints are levied to ensure the
feasibility of its real-time implementation on a very large-scale.

1.3. Related literature

Note that, as aforementioned, a control solution for a network
of systems with decoupled nonlinear dynamics and coupled nonlin-
ear tracking outputs can be obtained from this formulation making
use of linearization techniques. For a comprehensive overview of the
approaches to distributed RHC, see Bemporad and Barcelli (2010). Far-
hood et al. (2015) reduce the finite-horizon regulator problem of a
network of interconnected LTV systems into a sequence of linear matrix
inequalities (LMIs). However, even though the synthesized controller
can be implemented in a decentralized framework with a topology
inherited from the plant, the synthesis of the controller must be per-
formed in real-time in a single node. Since the computational and
memory requirements of this solution cannot be distributed across
the systems in the network, the computational, memory, and commu-
nication burden render such solution unfeasible in practice for very
large-scale networks. Recently, Pedroso and Batista (2023a) address the
problem of designing a decentralized control solution for a network
of agents modeled by LTV dynamics. In this work, a well-performing
decentralized solution leveraging convex relaxation is presented, which
is validated in a network of nonlinear systems employing linearization
techniques. Nevertheless, similarly to Farhood et al. (2015), the real-
time controller synthesis cannot be computed distributively. Thus,
albeit these two works propose decentralized strategies, their real-time
synthesis is centralized, whose communication, computational, and
memory requirements become unbearable as the dimension of the net-
work increases. This challenge has been noted and addressed to a great
extent for the extended Kalman filter (EKF) problem over very large-
scale networks of mobile robots. In this context, partially distributed
solutions have been proposed relying on centralized-equivalent frame-
works (Dai et al., 2016), bookkeeping (Leung et al., 2009), and covari-
ance intersection and split covariance intersection methods (Carrillo-
Arce et al., 2013; Wanasinghe et al., 2014). Nevertheless, for each
computational unit associated with a system, the communication, mem-
ory, and computational requirements, respectively, of these solutions
scale with the dimension of the network. Thus, these are not suited
to the envisioned very large-scale applications. A promising step to-
wards efficient distributed solutions has been made by Luft et al.
(2016, 2018). They propose a decentralized method that relies on
an approximation of the covariance between the estimation error of
each pair of systems, for a general network, which can be computed
distributively and supports asynchronous communication and mea-
surements. Although the computational and communication burden of
every system does not grow with the dimension of the network, the
memory requirements do. Recently, the authors proposed a distributed
decentralized EKF (Pedroso & Batista, 2023b) whose communication,
memory, and computational requirements of each computational unit
do not grow with the dimension of the network. In this paper, an
approach similar to Pedroso and Batista (2023b) is employed. Even
though the control-estimation duality usually allows to establish analo-
gous results, the intricacies of distributed and decentralized RHC do not
allow for a straightforward extension. Unlike the estimation problem,
research into distributed RHC schemes for decoupled LTV systems
is rather limited and focuses mainly on particular control problems.
For instance, in Bemporad and Rocchi (2011) a solution is presented
for the particular case of a formation of unmanned aerial vehicles.
Nevertheless, some results for decoupled nonlinear systems have al-
2

ready matured. Although these are designed in a distributed scheme, c
because of the nonlinear dynamics they, generally, rely on local com-
munication followed by the numerical solution of local optimization
problems in real-time. A distributed RHC solution in continuous-time
with stability guarantees is proposed in Dunbar and Murray (2004).
A decentralized RHC scheme suitable for leader–follower topologies
is presented in Richards and How (2004a, 2004b). Another very in-
teresting distributed and decentralized approach to the RHC problem
over networks of decoupled nonlinear systems is proposed in Keviczky
et al. (2006). Therein, unlike in this work, a priori knowledge of the
overall system equilibrium is assumed. Their approach is to divide the
global optimization problem in several smaller problems that concern
each system and its neighborhood. At each time instant, each system
solves a local RHC problem to find optimal inputs for itself and the
systems in its neighborhood. Then, in each system, the optimal input
of the first instant of the finite window concerned with that system is
used. Note that, in this framework, the optimal input that a system 𝑖
predicts for another system 𝑗 in its neighborhood is, generally, different
rom the optimal input that system 𝑗 computes for itself. Sufficient

stability conditions are derived as a function of this mismatch between
optimal solutions. However, this work does not provide a bound on the
mismatch between solutions as a function of the network topology and
dynamics. Moreover, in this framework, to compute the control input
at each time instant, each system ought to receive the state of every
neighbor and only then proceed with the solution of the local receding
horizon optimization problem. Thus, it is challenging to implement it
in practice without introducing significant delays.

1.4. Proposed approach

In this paper, we employ a decentralized framework in which
each system is associated with a computational unit that computes
its own control input making use of local communication and local
state feedback exclusively. To live up to the challenges of an imple-
mentation over a very large-scale network, heavy design constraints
regarding communication, computational, and memory requirements
are imposed. First, neither the data transmissions between systems nor
floating-point computations are considered to be instantaneous, thus
the distributed and decentralized solution must account for and cope
with the inevitable communication and computation delays. Second,
the number of communication links that a system establishes with other
systems shall not grow with the dimension of the network, i.e., the
communication complexity of each system must be (1). Third, the
quantity of data stored in each computational unit shall not grow with
the number of systems in the network. Fourth, the overall computa-
tional demand of the control solution must be distributed across all
computational units and the computational complexity of algorithms
implemented in each one must grow with (1) with the dimension
of the network. To devise such a solution, the propagation of the
contribution to the global tracking cost of the correlation between the
states of the systems is decoupled. This is achieved as the result of
an approximation that is introduced, similarly to Luft et al. (2016,
2018). A novel framework is proposed whereby each system 𝑖 keeps
n estimate of the contribution to the global tracking cost of the
orrelation between every pair of systems whose tracking output is
oupled with the state of 𝑖. These are updated in the computational
nit associated with 𝑖, neglecting the influence on the global tracking
ost of the correlation between systems whose tracking outputs do not
epend on a common system whose tracking output is coupled with
he state of 𝑖. Although it may seem puzzling at first sight, in what
ollows, this approximation is formally detailed, its origin and logic are
xplored, and its role on the decoupling of the contributions of each
ystem to the global tracking cost is made clear.

In contrast with the vast majority of the RHC solutions in the
iterature, the proposed approach abides by the aforementioned very
arge-scale feasibility constraints. Furthermore, contrarily to the inno-
ative approach in Keviczky et al. (2006) that follows such constraints,
he proposed solution does not assume knowledge about the global
quilibrium of the network. This is key, for instance, for the application

onsidered in this work, whereby the global equilibrium is unknown.
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1.5. Motivation for application in LEO mega-constellations

To evaluate the effectiveness of this solution and show its scalability
to very large-scale networks, it is applied to the orbit control problem
of low Earth orbit (LEO) satellite mega-constellations.

Despite the failure of most large LEO constellation projects dur-
ing the 1990s, the increasing technological advances and demand for
broadband connectivity led to a reawakening of these projects over the
past decade. LEO communication systems have plenty of advantages
over medium Earth orbit (MEO) and geosynchronous Earth orbit (GEO)
systems (Gavish, 1997). With the current technology, they are unar-
guably a solution to meet the soaring demand for reliable low-latency,
high capacity, global broadband connectivity. It is possible to notice
a paradigm shift from the use of constellations of a small number of
highly complex satellites to the employment of a very large number of
smaller and simpler satellites that cooperate in large-scale networks. In
fact, the term mega-constellation has been coined to designate these
very large-scale constellations. A number of these projects have been
under development, such as Telesat Lightspeed, OneWeb, Starlink,
and Project Kuiper, some of which are starting to be deployed. Not
surprisingly, the greatest concern is their economical viability.

Nevertheless, the aforementioned paradigm change has not yet been
accompanied by a paradigm change from an operations standpoint. In
fact, as detailed by Zhan et al. (2020), the tracking telemetry and com-
mand (TT&C) system projected for these constellations does not differ
from the TT&C system architecture employed for a single satellite. As
a result, the constellation monitoring systems are still constituted by
a main mission control center (MCC) with several ground terminals
scattered across the Earth. This framework is unsuitable for mega-
constellations since it is very challenging to implement in practice and
expensive to maintain. In fact, all-to-all communication is required
between all the satellites via the MCC to transmit large quantities of
data over long distances, which introduces delays and requires high
power consumption. If, for several reasons, namely geo-political factors,
it is not possible to establish a direct link with a ground station over
some areas, it is necessary to retransmit TT&C data with inter-satellite
links (ISL) via a path of satellites to an available ground station. This
continuous flow of data introduces an uneven communication pres-
sure on these links, which calls for complex protocols and introduces
delays. These are only but a few reasons to illustrate the inadequacy
of this classical paradigm, which wastes much needed resources such
as power and bandwidth. Given the paramount importance of cut-
ting costs for the viability of mega-constellations, there has to be a
paradigm change as far as TT&C architecture is concerned so that it
is efficient and cost effective (Zhan et al., 2020). The management of
satellite mega-constellations could be carried out in a decentralized
TT&C architecture. Orbit determination and control, as well as other
low-level constellation operations, could be carried out cooperatively
relying on local communication between satellites assured by ISL.
The shift towards a decentralized cooperative paradigm does not re-
quire all-to-all communication, the computational load is shared among
the satellites, and data is transmitted over much shorter distances.
Such a paradigm shift has self-evident benefits in terms of increased
efficiency and cost-effectiveness. Albeit well-performing, the current
decentralized solutions either require all-to-all communication, neglect
inevitable communication and computation delays, employ extensive
measurement bookkeeping, or are not computationally scalable, which
is unsuitable to the control problem of LEO mega-constellations. On
the contrary, the distributed and decentralized algorithm put forward
in this paper follows heavy constraints to cope with limited communi-
cation, computational, and memory resources of space systems, which
is critical for the onboard implementation in a mega-constellation.

In this paper, it is applied to the decentralized orbit control problem,
allowing for the cooperative maintenance of the constellation shape.
A novel approach that relies on a set of relative orbital elements
is devised aiming for efficiency and fuel saving. The source code of
a MATLAB implementation of the algorithm and of the numerical
simulations is available as an example in the DECENTER Toolbox at
https://decenter2021.github.io/examples/DDRHCStarlink/.
3

d

1.6. Statement of contributions

The main contributions of this paper are threefold. First, severe
constraints regarding communication, computational, and memory re-
quirements for the implementation of a RHC solution in real-time in
a very large-scale are rigorously defined. Second, a novel distributed
decentralized RHC method that abides by the very large-scale feasibility
constraints is devised. Third, the scalability of the proposed methods is
illustrated on a high-fidelity simulation of a very large-scale pressing
application, for which, to the best of the authors’ knowledge, no other
feasible solutions exist in the literature.

1.7. Paper outline

The structure of the paper is as follows. In Section 2, the decentral-
ized control problem is formulated together with the communication,
computational, and memory constraints that the control solution ought
to follow to enable a real-time implementation in very large-scale
systems. In Section 3, the proposed distributed and decentralized RHC
algorithm is derived. In Section 4, the algorithm put forward in this pa-
per is applied to the orbit control problem of LEO mega-constellations.
In Section 5, the principal findings and conclusions drawn from this
paper are presented.

1.8. Notation

Throughout this paper, the identity, null, and ones matrices, all
of proper dimensions, are denoted by 𝐈, 𝟎, and 𝟏, respectively. Al-
ernatively, 𝐈𝑛, 𝟎𝑛×𝑚, and 𝟏𝑛×𝑚 are also used to represent the 𝑛 × 𝑛
dentity matrix and the 𝑛 × 𝑚 null and ones matrices, respectively.
he entry (𝑖, 𝑗) of a matrix 𝐀 is denoted by [𝐀]𝑖𝑗 . The column-wise
oncatenation of vectors 𝐱1,… , 𝐱𝑁 is denoted by col(𝐱1,… , 𝐱𝑁 ) and
iag(𝐀1,… ,𝐀𝑁 ) represents the block diagonal matrix whose diagonal
locks are matrices 𝐀1,… ,𝐀𝑁 . The Kronecker delta is denoted by 𝜹𝑖𝑗 .
iven a symmetric matrix 𝐏, 𝐏 ≻ 𝟎 and 𝐏 ⪰ 𝟎 are used to point out

hat 𝐏 is positive definite and positive semidefinite, respectively. The
ronecker product of two matrices 𝐀 and 𝐁 is denoted by 𝐀⊗ 𝐁. The
ardinality of a set  is denoted by ||. The Cartesian product of two
ets  and  is denoted by ×. The modulo operation is denoted by
mod 𝑏, which returns the remainder of the integer division of 𝑎 ∈ N
y 𝑏 ∈ N. The greatest integer less than or equal to 𝑥 ∈ R is denoted
y ⌊𝑥⌋.

. Problem statement

The problem statement is introduced in three stages. In a first
nstance, in Section 2.1, the models of all of the systems of the net-
ork are defined and concatenated to express a global model for the
hole network. Second, in Section 2.2, the local RHC controllers are
efined and the control problem is formulated for the global controller.
hird, in Section 2.3, the communication, computational, and memory
onstraints are established. It is worth noting that this problem is
ormulated and tackled for a generic network of systems with LTV
ynamics and LTV tracking output couplings that reflect a network-
ise control objective. This approach does not rely on any further
ssumptions concerning the individual dynamics of each system, the
ature of the tracking output function, or the topology of the tracking
ouplings.

.1. Model of the network

Consider a network of 𝑁 systems, 𝑖 with 𝑖 = 1,… , 𝑁 , each
ssociated with a computational unit, 𝑖. Each system is dynamically

ecoupled and modeled by LTV dynamics. Each system has also an

https://decenter2021.github.io/examples/DDRHCStarlink/
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LTV tracking output, which is coupled with a set of other systems. The
tracking outputs can express a control objective that is common to all
the systems (for an example, see Section 4). Thus, the topology of the
network is portrayed by the tracking output couplings between systems,
which can be time-varying. It may be studied as a directed graph
 ∶= ( , ), where  is the set of vertices and  is the set of directed
dges. An edge 𝑒 directed from vertex 𝑗 towards vertex 𝑖 is denoted
y 𝑒 = (𝑗, 𝑖). The in-degree of a vertex 𝑖 is denoted by 𝜈−𝑖 , which is the

number of edges directed towards it, and its in-neighborhood is denoted
by −

𝑖 , which is the set of indices of the vertices from which such edges
originate. Likewise, the out-degree of a vertex 𝑖 is denoted by 𝜈+𝑖 , which
s the number of edges directed from it, and its out-neighborhood is
enoted by +

𝑖 , which is the set of indices of the vertices towards which
uch edges are directed. In this setting, each system is represented by a
ertex, i.e., system 𝑖 is represented by vertex 𝑖, and, if the tracking

output of 𝑖 is coupled with the state of 𝑗 , this interconnection is
expressed by an edge 𝑒 = (𝑗, 𝑖). It is crucial to emphasize that the
direction of the edge holds significant importance. For example, if the
tracking output of 𝑖 depends on the state of 𝑗 it does not imply the
converse necessarily. Moreover, since the local goal of each system 𝑖
is to drive the tracking output to zero, henceforth it considered without
any loss of generality that 𝑖 ∈ −

𝑖 , i.e., the tracking output of system 𝑖
depends on its state. Thus, each vertex of the topology graph is assumed
to have a self-loop.

The dynamics of system 𝑖 are modeled by the discrete-time LTV
system
{

𝐱𝑖(𝑘 + 1) = 𝐀𝑖(𝑘)𝐱𝑖(𝑘) + 𝐁𝑖(𝑘)𝐮𝑖(𝑘)
𝐳𝑖(𝑘) =

∑

𝑗∈−
𝑖
𝐇𝑖,𝑗 (𝑘)𝐱𝑗 (𝑘),

(1)

where 𝐱𝑖(𝑘) ∈ R𝑛𝑖 is the state vector, 𝐮𝑖(𝑘) ∈ R𝑚𝑖 is the input vector,
and 𝐳𝑖(𝑡) ∈ R𝑜𝑖 is the tracking output vector, all of system 𝑖; matrices
𝐀𝑖(𝑘), 𝐁𝑖(𝑘), and 𝐇𝑖,𝑗 (𝑘) with 𝑗 ∈ −

𝑖 are time-varying matrices, known
in 𝑖, that model the dynamics of system 𝑖 and its tracking output
couplings with the other systems in its in-neighborhood. Note that
linearization techniques can be employed to approximate the dynamics
of a nonlinear system with a nonlinear tracking output as an LTV system
of the form of (1).

The global dynamics of the network can, then, be modeled by the
discrete-time LTV system
{

𝐱(𝑘 + 1) = 𝐀(𝑘)𝐱(𝑘) + 𝐁(𝑘)𝐮(𝑘)
𝐳(𝑘) = 𝐇(𝑘)𝐱(𝑘),

(2)

where 𝐱(𝑘) ∶= col(𝐱1(𝑘),… , 𝐱𝑁 (𝑘)) ∈ R𝑛 is the global state vector,
𝐮(𝑘) ∶= col(𝐮1(𝑘),… ,𝐮𝑁 (𝑘)) ∈ R𝑚 is the global input vector, and
𝐳(𝑘) ∶= col(𝐳1(𝑘),… , 𝐳𝑁 (𝑘)) ∈ R𝑜 is the global tracking output vector;
𝐀(𝑘) ∶= diag(𝐀1(𝑘),… ,𝐀𝑁 (𝑘)) and 𝐁(𝑘) ∶= diag(𝐁1(𝑘),… ,𝐁𝑁 (𝑘)) model
the dynamics of the global network; and 𝐇(𝑘) is a block matrix whose
block of indices (𝑖, 𝑗) is 𝐇𝑖,𝑗 (𝑘), if 𝑗 ∈ −

𝑖 , and 𝟎𝑜𝑖×𝑛𝑗 otherwise.
Before proceeding with the problem statement, it is worth pointing

out that the network-wise control objective of virtually all large-scale
networks can be expressed by sparse tracking couplings. In particular,
𝜈−𝑖 , the number of tracking output couplings of a system 𝑖, is bounded
and it is independent of 𝑁 . The innovative solution put forward herein
exploits the sparsity of these couplings to enable a distributed and
decentralized RHC algorithm subject to severe communication, com-
putational, and memory constraints.

2.2. Decentralized receding horizon control problem

The goal of the proposed RHC controller is to regulate the global
tracking output making use of local linear state feedback. On one hand,
in a centralized setting the global state of the network is accessible to
every system at the cost of all-to-all communication via a central node.
On the other hand, in a decentralized setting, it is not the case: each
system  only has access to a fraction of the global state. Herein, a
4

𝑖

fully decentralized configuration is addressed, i.e., at every discrete-
time instant 𝑘, only the states of the systems in the in-neighborhood
of 𝑖 are accessible to 𝑖. Section 2.3 explores this property in greater
depth. The control input of 𝑖 is, thus, of the form

𝐮𝑖(𝑘) = −
∑

𝑗∈−
𝑖

𝐊𝑖,𝑗 (𝑘)𝐱𝑗 (𝑘), (3)

where 𝐊𝑖,𝑗 (𝑘) for 𝑗 ∈ −
𝑖 are the controller gains of 𝑖.

The aim is to design optimal controller gains with respect to a
performance metric. It is important to remark that the gains of each
system cannot be independently designed due to the tracking couplings
between systems. As a result, the local controllers are concatenated to
define a global controller, which is used to formulate a global RHC
problem. The global control input is given by

𝐮(𝑘) = −𝐊(𝑘)𝐱(𝑘), (4)

where 𝐊(𝑘) is the global gain matrix. Note that the global control law
(4) is equivalent to the concatenation of the local control laws (3) if
and only if 𝐊(𝑘) follows the sparsity pattern of block matrix 𝐄, whose
block of indices (𝑖, 𝑗) is given by

𝐄 𝑖,𝑗 =

{

𝟏𝑚𝑖×𝑛𝑗 , 𝑗 ∈ −
𝑖

𝟎𝑚𝑖×𝑛𝑗 , 𝑗 ∉ −
𝑖 .

This sparsity condition is denoted as 𝐊(𝑘) ∈ Sparse(𝐄), with

Sparse(𝐄) =
{

[𝐊]𝑖𝑗 ∈ R𝑚×𝑛 ∶

[𝐄]𝑖𝑗 = 0 ⟹ [𝐊]𝑖𝑗 = 0; 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛
}

.

If all-to-all communication were possible, then 𝐄 = 𝟏, corresponding
to a centralized configuration.

It is now possible to state the global RHC problem. The goal is to
minimize an infinite-horizon performance cost

𝐽∞ ∶=
𝑁
∑

𝑖=1
𝐽𝑖∞ =

𝑁
∑

𝑖=1

∞
∑

𝜏=0

(

𝐳𝑇𝑖 (𝜏)𝐐𝑖(𝜏)𝐳𝑖(𝜏) + 𝐮𝑇𝑖 (𝜏)𝐑𝑖(𝜏)𝐮𝑖(𝜏)
)

,

where 𝐐𝑖(𝜏) ⪰ 0 and 𝐑𝑖(𝜏) ≻ 0 are known time-varying matrices of
appropriate dimensions that weigh the local tracking output and input
of each system 𝑖, respectively. The proposed method consists of an
approximation to the solution of the infinite-horizon problem above,
considering multiple finite-horizon problems with an associated cost of
the form

𝐽 (𝑘) ∶=
𝑁
∑

𝑖=1
𝐽𝑖(𝑘)

=
𝑁
∑

𝑖=1

(

𝐳𝑇𝑖 (𝑘 +𝐻)𝐐𝑖(𝑘 +𝐻)𝐳𝑖(𝑘 +𝐻)

+
𝑘+𝐻−1
∑

𝜏=𝑘

(

𝐳𝑇𝑖 (𝜏)𝐐𝑖(𝜏)𝐳𝑖(𝜏) + 𝐮𝑇𝑖 (𝜏)𝐑𝑖(𝜏)𝐮𝑖(𝜏)
)

)

,

(5)

where 𝐻 ∈ N denotes the length of the finite window. The extension
of this problem to an infinite-horizon is achieved by making use of
a scheme similar to model predictive control (MPC). One considers
a finite window {𝑘,… , 𝑘 + 𝐻}, with 𝐻 large enough so that the
gains computed within that window converge to those that would
be obtained if an arbitrarily large window was used. To reduce the
computational load, 𝑑 ∈ N gains may be used, instead of just one,
defining a new window and computing the gains associated with it
every 𝑑 time steps. Although the higher 𝑑 is, the less the computational
load is, if too large a value of 𝑑 is chosen, a degradation of performance
and robustness may occur.

To formulate the problem globally, (5) can be rewritten as

𝐽 (𝑘) = 𝐳𝑇 (𝑘 +𝐻)𝐐(𝑘 +𝐻)𝐳(𝑘 +𝐻)

+
𝑘+𝐻−1
∑

(

𝐳𝑇 (𝜏)𝐐(𝜏)𝐳(𝜏) + 𝐮𝑇 (𝜏)𝐑(𝜏)𝐮(𝜏)
)

,

𝜏=𝑘
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a

where 𝐐(𝜏) ∶= diag
(

𝐐1(𝜏),… ,𝐐𝑁 (𝜏)
)

and 𝐑(𝜏) ∶= diag
(

𝐑1(𝜏),… ,
𝐑𝑁 (𝜏)

)

. Remark that devising a decentralized controller for a network
of systems, whose dynamics are governed by the LTV system (1), is
analogous to devising a controller (4) for the global system (2) whereby
the gain follows a sparsity pattern. The goal is to optimally design a
sequence of gains that satisfy the sparsity pattern corresponding to a
fully decentralized configuration. It results, for a finite-horizon, in the
following optimization problem

minimize
𝐊(𝜏)∈R𝑚×𝑛

𝜏∈{𝑘,…,𝑘+𝐻−1}

𝐽 (𝑘)

subject to 𝐊(𝜏) ∈ Sparse(𝐄),

𝐱(𝜏 + 1) = (𝐀(𝜏) − 𝐁(𝜏)𝐊(𝜏)) 𝐱(𝜏),
𝜏 = 𝑘,… , 𝑘 +𝐻 − 1.

(6)

The optimization problem (6) poses a significant challenge since it is
nonconvex even for networks with LTI dynamics. A viable solution is
to relax the optimization problem, rendering it convex and making it
possible to employ well-established optimization techniques. Neverthe-
less, the relaxed solution is merely an approximation to the original
problem, despite being optimal for the relaxed version. Therefore, a
cautious relaxation approach is essential to minimize the deviation
between the two solutions. This approach is employed to devise the
control solution proposed in this work.

2.3. Feasibility constraints

Naturally, the control solution developed to solve (6) ought to be
feasible to be implemented in real-time in a decentralized configura-
tion. Specifically, the computation of each gain 𝐊𝑖,𝑗 (𝑘), 𝑗 ∈ −

𝑖 , in 𝑖
ought to abide by severe constraints regarding communication, compu-
tational, and memory requirements. In what follows, these constraints
are detailed rigorously.

First, a crucial point to consider is the synchronization of the data
transmissions. On one hand, a variable stored in 𝑗 at time instant
𝑘 that is required to perform a computation in 𝑖 at time instant 𝑘
would have to be transmitted instantaneously. These are designated as
hard real-time transmissions, which require complex synchronization
procedures. On the other hand, in a soft real-time transmission, the
receiving computational unit only makes use of the transmitted data
since, at least, the discrete time-instant that follows the instant of the
transmission. Therefore, soft real-time transmission are robust to com-
munication delays up to the discretization time-step. One can readily
point out that the definition of the local control input (3) requires a
hard real-time transmission. In fact, 𝐱𝑗 (𝑘), with 𝑗 ∈ −

𝑖 , has to be
instantaneously transmitted to 𝑖, because it is known to 𝑗 only at
time instant 𝑘 and it is required in 𝑖 at time instant 𝑘. For this case
in particular, various techniques can be used to allow for a feasible
implementation, since the state of a system is a small data transfer
and it can be easily predicted over small time intervals. As a result,
henceforth, the communication requirements are focused on the gain
computation, for which hard real-time transmissions are not allowed.

Second, each system can only establish a communication link with a
limited number of other systems in the network. While some solutions
in the literature rely on all-to-all communication, they are not scalable
for very large-scale networks. Thus, it is necessary to restrict the
number of communication links established with each systems to grow
with (1) with the dimension of the network, 𝑁 , ensuring that the
communication complexity is (1). It is crucial to emphasize that the
communication limitations are enforced at the protocol level, i.e., gov-
erning the exchange of data between systems, rather than limiting the
physical communication links. Specifically, it is not permitted for 𝑖 to
access data from 𝑘 via intermediary systems that could retransmit the
information.

Third, each computational unit has limited memory. Therefore, the
5

quantity of data stored in each one must not scale with the dimension 𝐒
of the network, i.e., the data storage complexity of each computational
unit must grow with (1) with 𝑁 .

Fourth, the implementation of the local control solution requires
computational resources in each computational unit, which are also
limited. As such, the burden of the computation of the global control
algorithm ought to be shared among all computational units, such that
each performs computations related with its associated system exclu-
sively. Hence, the computational complexity of each computational unit
ought to grow with (1) with 𝑁 .

The control solution must satisfy the following constraints.

Constraint 1. Hard real-time transmissions are not allowed for the
synthesis of controller gains.

Constraint 2. The communication complexity of each computational
unit must grow with (1) with 𝑁 .

Constraint 3. The data storage complexity of each computational unit
must grow with (1) with 𝑁 .

Constraint 4. The computational complexity of each computational
unit must grow with (1) with 𝑁 .

3. Distributed and decentralized RHC

The aim is to devise a decentralized control solution that solves
the optimization problem (6) subject to the communication, memory,
and computational Constraints 1–4 detailed in Section 2.3, which are
critical for a feasible implementation to very large-scale systems. The
derivation of the distributed and decentralized RHC solution is carried
out in three stages: (i) convex relaxation of (6); (ii) decoupling of the
gain synthesis procedure; and (iii) scheduling of the computations. In
Section 3.4, the communication, memory, and computational require-
ments of the proposed solution are thoroughly analyzed in light of
the constraints that were levied. First, this approach is devised for a
time-invariant network topology and, in Section 3.5, it is extended to
a time-varying topology.

3.1. Convex relaxation

A similar approach to the one used for the unconstrained RHC
methodology is employed relying on the convex relaxation of (6).
As pointed out in Section 1, (6) has already been addressed in Pe-
droso and Batista (2023a) without taking the communication, memory,
and computational Constraints 1–4 put forward in Section 2.3 into
account, which are not satisfied by the solution proposed therein. Nev-
ertheless, some interesting results in Pedroso and Batista (2023a) can
be leveraged to devise a distributed solution. Consider the following
preliminary result.

Lemma 3.1. Let 𝐥𝑗 denote a column vector whose entries are all set to
zero except for the 𝑗th one, which is set to 1. The solutions to the necessary
condition for a constrained minimum of the Hamiltonian of (6) follow
{

𝐥𝑇𝑗
[(

𝐒(𝜏)𝐊(𝜏) − 𝐁𝑇 (𝜏)𝐏(𝜏 + 1)𝐀(𝜏)
)

𝐱(𝜏)𝐱𝑇 (𝜏)
]

𝐥𝑖 = 0 , [𝐄]𝑗𝑖 ≠ 0
𝐥𝑇𝑗 𝐊(𝜏)𝐥𝑖 = 0 , [𝐄]𝑗𝑖 = 0,

(7)

for 𝜏 = 𝑘,… , 𝑘+𝐻−1, where 𝐏(𝜏), 𝜏 = 𝑘,… , 𝑘+𝐻 , is a symmetric positive
semidefinite matrix given by

⎧

⎪

⎨

⎪

⎩

𝐏(𝑘 +𝐻) = 𝐇𝑇 (𝑘 +𝐻)𝐐(𝑘 +𝐻)𝐇(𝑘 +𝐻)
𝐏(𝜏) = 𝐇(𝜏)𝑇𝐐(𝜏)𝐇(𝜏) +𝐊𝑇 (𝜏)𝐑(𝜏)𝐊(𝜏)

+ (𝐀(𝜏) − 𝐁(𝜏)𝐊(𝜏))𝑇𝐏(𝜏 + 1)(𝐀(𝜏) − 𝐁(𝜏)𝐊(𝜏)),
(8)

nd
𝑇
(𝜏) ∶= 𝐁 (𝜏)𝐏(𝜏 + 1)𝐁(𝜏) + 𝐑(𝜏). (9)
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Furthermore, it follows that

𝐱𝑇 (𝜏)𝐏(𝜏)𝐱(𝜏) = 𝐳𝑇 (𝑘 +𝐻)𝐐(𝑘 +𝐻)𝐳(𝑘 +𝐻)

+
𝑘+𝐻−1
∑

𝑠=𝜏

(

𝐳𝑇 (𝑠)𝐐(𝑠)𝐳(𝑠) + 𝐮𝑇 (𝑠)𝐑(𝑠)𝐮(𝑠)
)

.
(10)

Proof. See Pedroso and Batista (2023a, Appendix A) . □

Lemma 3.1 puts emphasis on the nonconvexity of (6) since there
are, in general, multiple solutions to the necessary condition of a
constrained minimum. Herein, the convex relaxation approach is to
approximate a single solution to (7), not necessarily optimal, which
follows
{

𝐥𝑇𝑗
[

𝐒(𝜏)𝐊(𝜏) − 𝐁𝑇 (𝜏)𝐏(𝜏 + 1)𝐀(𝜏)
]

𝐥𝑖 = 0 , [𝐄]𝑗𝑖 ≠ 0
𝐥𝑇𝑗 𝐊(𝜏)𝐥𝑖 = 0 , [𝐄]𝑗𝑖 = 0.

(11)

This convex relaxation procedure, denoted as one-step relaxation, is
analyzed with detail in Pedroso and Batista (2023a), where it is shown
to be equivalent to three different relaxation hypothesis.

3.2. Gain synthesis decoupling

Define a block decomposition of 𝐏(𝜏) and 𝐒(𝜏), whose blocks of
indices (𝑖, 𝑗) are denoted by 𝐏𝑖,𝑗 (𝜏) ∈ R𝑛𝑖×𝑛𝑗 and 𝐒𝑖,𝑗 (𝜏) ∈ R𝑚𝑖×𝑚𝑗 ,
respectively. Making use of this block decomposition, one can rewrite
(8) in a decoupled manner for each of the blocks of 𝐏(𝜏) as a function
of the local dynamics and tracking output matrices as

𝐏𝑝,𝑞(𝑘 +𝐻) =
∑

𝑟∈+
𝑝 ∩+

𝑞

𝐇𝑇
𝑟,𝑖(𝑘 +𝐻)𝐐𝑟(𝑘 +𝐻)𝐇𝑟,𝑗 (𝑘 +𝐻)

and

𝐏𝑝,𝑞(𝜏) =
∑

𝑟∈+
𝑝 ∩+

𝑞

𝐇𝑇
𝑟,𝑖(𝜏)𝐐𝑟(𝜏)𝐇𝑟,𝑗 (𝜏) +

∑

𝑟∈+
𝑝 ∩+

𝑞

𝐊𝑇
𝑟,𝑖(𝜏)𝐑𝑟(𝜏)𝐊𝑟,𝑗 (𝜏)

+
∑

𝑟∈+
𝑝

∑

𝑠∈+
𝑞

(

𝐀𝑝(𝜏)𝜹𝑝𝑟 − 𝐁𝑟(𝜏)𝐊𝑟,𝑝(𝜏)
)𝑇

𝐏𝑟,𝑠(𝜏 + 1)
(

𝐀𝑞(𝜏)𝜹𝑞𝑠 − 𝐁𝑠(𝜏)𝐊𝑠,𝑞(𝜏)
)

.

(12)

One can also express the blocks of 𝐒(𝜏) as a function of the blocks of
𝐏(𝜏 + 1) as

𝐒𝑖,𝑗 (𝜏) = 𝐁𝑇𝑖 (𝜏)𝐏𝑖,𝑗 (𝜏 + 1)𝐁𝑗 (𝜏) + 𝜹𝑖𝑗𝐑𝑗 (𝜏),

which follows immediately from (9). Moreover, leveraging the afore-
mentioned block decomposition, the relaxed conditions (11) of the
feedback gains of the form 𝐊𝑗,𝑖(𝜏) can also be written in a decoupled
manner, for each 𝑖 ∈ {1,… , 𝑁}, as

⎧

⎪

⎨

⎪

⎩

∑

𝑝∈+
𝑖

𝐒𝑗,𝑝(𝜏)𝐊𝑝,𝑖(𝜏) − 𝐁𝑇𝑗 (𝜏)𝐏𝑗,𝑖(𝜏 + 1)𝐀𝑖(𝜏) = 𝟎, 𝑗 ∈ +
𝑖

𝐊𝑗,𝑖(𝜏) = 𝟎, 𝑗 ∉ +
𝑖 .

(13)

For each set +
𝑖 , let +

𝑖 = {𝑝𝑖1,… , 𝑝𝑖
|+

𝑖 |
}. Then, concatenating the

feedback gains of the form 𝐊𝑗,𝑖(𝜏), with 𝑗 ∈ +
𝑖 , and combining the

corresponding decoupled relaxed conditions of the first member of (13),
it follows that

𝐊̃𝑖(𝜏) = 𝐒̃𝑖(𝜏)−1𝐏̃𝑖(𝜏 + 1), (14)

where

𝐊̃𝑖(𝜏) ∶=

⎡

⎢

⎢

⎢

⎣

𝐊𝑝𝑖1 ,𝑖

⋮
𝐊𝑝𝑖

|+
𝑖 |
,𝑖

⎤

⎥

⎥

⎥

⎦

,

𝐒̃𝑖(𝜏) ∶=

⎡

⎢

⎢

⎢

⎢

𝐒𝑝𝑖1 ,𝑝𝑖1 … 𝐒𝑝𝑖1 ,𝑝𝑖
|+
𝑖 |

⋮ ⋱ ⋮
𝐒𝑝𝑖 ,𝑝𝑖 … 𝐒𝑝𝑖 ,𝑝𝑖

⎤

⎥

⎥

⎥

⎥

, (15)
6

⎣
|+
𝑖 |

1
|+
𝑖 | |+

𝑖 |⎦
and

𝐏̃𝑖(𝜏 + 1) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐁𝑇
𝑝𝑖1
(𝜏)𝐏𝑝𝑖1 ,𝑖(𝜏 + 1)𝐀𝑖(𝜏)

⋮
𝐁𝑇
𝑝𝑖
|+
𝑖 |

(𝜏)𝐏𝑝𝑖
|+
𝑖 |
,𝑖(𝜏 + 1)𝐀𝑖(𝜏)

⎤

⎥

⎥

⎥

⎥

⎦

. (16)

Note that, although (14) provides an expression to compute the
gains of systems 𝑗 with 𝑗 ∈ +

𝑖 in relation to the state of system 𝑖, it
cannot be computed without full knowledge of 𝐏(𝜏 + 1). This is due to
the fact that the propagation of 𝐏𝑗,𝑖(𝜏) with 𝑗 ∈ +

𝑖 in (12) depends on
several 𝐏𝑟,𝑠(𝜏 + 1) with 𝑟 ∈ +

𝑗 and 𝑠 ∈ +
𝑖 , which in turn depends on

blocks of 𝐏(𝜏 +2) that are even less coupled with 𝑖, and so on. Hence,
this result is unfit to be implemented in a distributed framework. In
what follows, under a thoughtful approximation, the computation of
these gains is decoupled. Then, an algorithm is proposed to enable their
distributed computation across the computational units of each system
such that the communication, memory, and computational constraints
detailed in Section 2.3 are followed.

Approximation 3.1. Consider 𝐏𝑝,𝑞(𝜏), with 𝑝 ∈ +
𝑖 and 𝑞 ∈ +

𝑖 for
some 𝑖, and 𝐏𝑟,𝑠(𝜏 + 1), with 𝑟 ∈ +

𝑝 and 𝑠 ∈ +
𝑞 . In the decentralized

algorithm put forward in this paper, 𝐏𝑟,𝑠(𝜏 + 1) is considered to be null
n the computation of 𝐏𝑝,𝑞(𝜏) in the computational unit 𝑖 if (𝑟, 𝑠) ∉ 𝜓𝑖,
here

𝑖 =
⋃

𝑗∈+
𝑖

𝜙𝑗 , (17)

ith

𝑖 ∶= +
𝑖 ×+

𝑖 = {(𝑝, 𝑞) ∈ N2 ∶ 𝑝 ∈ +
𝑖 ∧ 𝑞 ∈ +

𝑖 }. (18)

The main result of this paper follows from Approximation 3.1. Next,
it is argued that this approximation makes sense in the context of RHC
of a large-scale network. Note that, from (10) in Lemma 3.1, 𝐏𝑟,𝑠(𝜏)
is a measure of the contribution of the correlation between the states
of systems 𝑟 and 𝑠 to the global cost. Fig. 1 depicts the topology
of Approximation 3.1 in a graph. Intuitively, it is expected that the
influence of 𝐏𝑟,𝑠(𝜏 + 1) is more dominant in the computation of 𝐊𝑝,𝑖(𝑘)
for 𝑝 ∈ +

𝑖 if both the states of 𝑟 and 𝑠 are coupled with the output of
a system 𝑘 that is coupled with the output of 𝑖. As a result, to enable
a decoupled computation of the synthesis of each local controller, each
computational unit 𝑖 keeps in memory and updates each 𝐏𝑝,𝑞(𝜏) with
(𝑝, 𝑞) ∈ 𝜙𝑖. Henceforth, the approximation of matrix 𝐏𝑝,𝑞(𝜏) that is
stored and updated in 𝑖 is denoted by 𝐏𝑖,(𝑝,𝑞)(𝜏). Thus, making use of
Approximation 3.1, (12) becomes

𝐏𝑖,(𝑝,𝑞)(𝜏) =
∑

𝑟∈+
𝑝 ∩+

𝑞

𝐇𝑇
𝑟,𝑖(𝜏)𝐐𝑟(𝜏)𝐇𝑟,𝑗 (𝜏) +

∑

𝑟∈+
𝑝 ∩+

𝑞

𝐊𝑇
𝑟,𝑖(𝜏)𝐑𝑟(𝜏)𝐊𝑟,𝑗 (𝜏)

+
∑

𝑟∈+
𝑝

∑

𝑠∈+
𝑞

(𝑟,𝑠)∈𝜓𝑖

(

𝐀𝑝(𝜏)𝜹𝑝𝑟 − 𝐁𝑟(𝜏)𝐊𝑟,𝑝(𝜏)
)𝑇

𝐏+
𝑖 ,(𝑟,𝑠)

(𝜏 + 1)
(

𝐀𝑞(𝜏)𝜹𝑞𝑠 − 𝐁𝑠(𝜏)𝐊𝑠,𝑞(𝜏)
)

,

(19)

here the subscript +
𝑖 in 𝐏+

𝑖 ,(𝑟,𝑠)
(𝜏+1) indicates, by abuse of notation,

hat 𝐏+
𝑖 ,(𝑟,𝑠)

(𝜏 + 1) is computed in 𝑘 with 𝑘 ∈ +
𝑖 . Note that, with

pproximation 3.1, the propagation of 𝐏(𝜏) in (19) can be computed
n a distributed manner. Note that 𝐏+

𝑖 ,(𝑟,𝑠)
(𝜏+1), inside the summation

n (19), is not necessarily computed in 𝑖, since only 𝐏𝑖,(𝑝,𝑞)(𝑘|𝑘), with
𝑝, 𝑞) ∈ 𝜙𝑖, are updated in 𝑖. Therefore, 𝑖 has to receive 𝐏𝑘,(𝑟,𝑠)(𝜏 + 1)
hrough communication from a system 𝑘, with 𝑘 ∈ +

𝑖 .
Similarly to the analogous approximation for the estimation prob-

em, it can be shown analogously that the approximation induced
y Approximation 3.1 is exact for certain topologies such as string,
ree, and ring configurations (Pedroso & Batista, 2023b, Lemma 2).
n such topologies, it is possible to distribute the computations of the
lobally synthesized controller among the computational units without
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Fig. 1. Graphic illustration of Approximation 3.1.

disregarding any components of 𝐏(𝜏+1). The proposed RHC algorithm,
which follows from Approximation 3.1, is presented in the following
result.

Theorem 3.1 (Distributed and Decentralized RHC). The solution of the
optimization problem (6) under the one-step convex relaxation (11), under
Approximation 3.1, and subject to the communication, computational, and
memory constraints detailed in Section 2.3 is given, for a time-invariant
coupling topology, by the local gain computations presented in Algorithm 1.

Proof . The decoupled computation of each local gain is portrayed
by (14). Taking into account Approximation 3.1, the distributed com-
putation of 𝐏(𝜏) is carried out according to (19). All variables that
are required for these computations in each computational unit 𝑖 are
available through local communication with computational units in its
out-neighborhood, i.e., 𝑗 for 𝑗 ∈ +

𝑖 . Under the scheduling of the
computations presented in Section 3.3, it is shown in Section 3.4 that
computational, and memory requirements of this algorithm satisfy the
very large-scale feasibility constraints. □

Unsurprisingly, the inner loop of Algorithm 1 shares some simi-
larities with the solution to the analogous distributed decentralized
estimation problem recently proposed by the authors in Pedroso and
Batista (2023b). Although this work addresses a completely different
problem with intricacies that far exceed the control-estimation duality,
in Pedroso and Batista (2023b, Remarks 2–4) noteworthy remarks
are raised which are applicable to some implementation aspects of
Algorithm 1.

3.3. Scheduling

In Section 3.2, under appropriate approximations, an algorithm was
devised for the decoupled synthesis of the RHC gains over a finite-
window {𝑘,… , 𝑘 + 𝐻 − 1}. This algorithm allows for distributing the
global computation across the computational units of the systems that
make up the network. Nevertheless, recall that, as put forward in
Section 2.2, for the application of this framework to the infinite-horizon
problem, a new window of gains of length 𝐻 has to be computed every
𝑑 time steps, of which only 𝑑 gains are used to compute the control
input according to (3). Furthermore, the decoupled gain computation
in Algorithm 1 is carried out backwards in time. Thus, at the time
instant that corresponds to the beginning of each window, all RHC
gains over that window must have already been computed. Since these
computations involve several communication instances, the steps in
7

Algorithm 1 have to be properly scheduled to make use of soft real-time
data transmissions only, as required by the communication constraints
for a feasible large-scale implementation detailed in Section 2.3. This
issue is addressed in this section.

Denote the control discretization time by 𝑇𝑐 , which is the sampling
time of the LTV system (1). Let 𝑇𝑡 denote the interval of time between
allowed communication instances, i.e., 𝑇𝑡 must be set so that it is
greater than the time it takes for a system to communicate with the
systems in its neighborhood and to perform floating-point operations
with the data received in that transmission. Generally, 𝑇𝑐 is signifi-
cantly larger than the minimum achievable 𝑇𝑡. It is important to remark
that, in general, parallel to the control computations, there are also
estimation algorithms running over the network. These usually require
a higher rate of communication than control algorithms. Thus, one can
set 𝑇𝑡 to the sampling time of the estimation algorithm.

Algorithm 1 requires 𝐻 + 2 data transmissions between systems in
the neighborhood of each other. Only after the last transmission of
Algorithm 1, the gains 𝐊𝑖,𝑝(𝜏),∀𝑝 ∈ −

𝑖 , 𝜏 = 𝑘,… , 𝑘+𝑑 −1 are available
to 𝑖. To compute the control feedback according to (3), these gains
need to be available in 𝑖 at 𝑡 = 𝑘𝑇𝑐 . Therefore, to avoid hard real-
time transmissions, they must be sent at most at 𝑡 = 𝑘𝑇𝑐 − 𝑇𝑡. Thus, the
proposed approach is to schedule the 𝐻 +2 transmissions of Algorithm
1 such that they are performed at a rate of 1∕𝑇𝑡. Thus, it takes 𝛥− ∶=
(𝐻 + 2)𝑇𝑡 to run Algorithm 1. For that reason, the computation of the
RHC gains over the window {𝑘,… , 𝑘+𝐻−1} must start at 𝑡 = 𝑘𝑇𝑐 −𝛥−.
A scheme of the proposed scheduling of Algorithm 1 over a timeline is
depicted in Fig. 2, for the illustrative time interval [𝑘𝑇𝑐 ; (𝑘+𝑑)𝑇𝑐 [. In this
time interval, the control input is computed according to (3), making
use of the gains in the window {𝑘,… , 𝑘+𝐻 − 1}, which is represented
in the line adjacent to the timeline that comprises 𝑘𝑇𝑐 ≤ 𝑡 < (𝑘 + 𝑑)𝑇𝑐 .
As aforementioned, the computation of these gains must be carried out
starting at 𝑡 = 𝑘𝑇𝑐 − 𝛥− and they only become available for use in the
control law at 𝑡 = 𝑘𝑇𝑐 , which is represented by the left rectangle with
diagonal fill in the scheme. Moreover, during the application of the
control inputs in 𝑘𝑇𝑐 ≤ 𝑡 < (𝑘 + 𝑑)𝑇𝑐 , the computation of the gains
corresponding to the next finite window needs to start being carried
out, which is represented in the scheme by the rectangle with diagonal
fill in the right.

First, it is worth remarking that the proposed scheduling requires
that the dynamics of a system 𝑖 over the window {𝑘,… , 𝑘 + 𝐻 − 1}
are predicted at 𝑡 = 𝑘𝑇𝑐 −𝛥−. Thus, if 𝛥− is too large, the quality of the
prediction may be degraded. Second, if 𝑑𝑇𝑐 < 𝛥−, i.e., 𝑑∕(𝐻+2) < 𝑇𝑡∕𝑇𝑐 ,
the gain computation of two consecutive windows overlaps (rectangles
with diagonal fill in Fig. 2 overlap). If 𝑇𝑡 is not large enough to handle
twice the communication and computational pressure, then it may lead
to the unfeasibility of the control solution.

3.4. Communication, computational, and memory requirements

To lighten the notation and enable a clearer analysis of the com-
munication, computational, and memory requirements of Algorithm
1, an homogeneous network is considered. Specifically, consider sys-
tems with the same order 𝑛1, output dimension 𝑜1, dimension of in-
neighborhood 𝜈−1 , and dimension of out-neighborhood 𝜈+1 .

First, making use of the scheduling of the computations in Algorithm
1 proposed in Section 3.3, only soft real-time transmissions are required
for the distributed computation of the controller gains. Second, the
communication graph 𝑐 , i.e., the graph representation of the required
directed communication links, corresponds to the tracking output cou-
pling graph with undirected edges. Thus, system 𝑖 can only receive
information from system 𝑗 if the tracking output of 𝑗 is coupled with
the state of 𝑖 or the converse, i.e., 𝑗 ∈ +

𝑖 ∪ −
𝑖 . In fact, system 𝑖

requires the exchange of data through communication with at most
max

(

𝜈−𝑖 , 𝜈
+
𝑖
)

−1 systems at each iteration. The communication complex-
ity of system  is 

(

max
(

𝜈−, 𝜈+
))

. Since neither 𝜈− nor 𝜈+ increase
𝑖 𝑖 𝑖 𝑖 𝑖
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Algorithm 1 Distributed and decentralized RHC algorithm for the local gain synthesis of a new window of gains at time instant 𝑘 in computational
nit 𝑖, for a time-invariant coupling topology.

Output: 𝐊𝑖,𝑝(𝜏),∀𝑝 ∈ −
𝑖 , 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1

Step 1: Predict: 𝐀𝑖(𝜏),𝐁𝑖(𝜏), 𝐑𝑖(𝜏), 𝜏 = 𝑘,… , 𝑘 +𝐻 − 1;
𝐇𝑖,𝑝(𝜏),∀𝑝 ∈ −

𝑖 , 𝜏 = 𝑘 + 1,… , 𝑘 +𝐻 ;
𝐐𝑖(𝜏), 𝜏 = 𝑘 + 1,… , 𝑘 +𝐻 .

Step 2: Transmit: 𝐐𝑖(𝑘 +𝐻)1∕2𝐇𝑖,𝑝(𝑘 +𝐻),∀𝑝 ∈ −
𝑖 to ∀𝑝 ∈ −

𝑖 ⧵ {𝑖}.
Step 3: Receive: 𝐐𝑝(𝑘 +𝐻)1∕2𝐇𝑝,𝑖(𝑘 +𝐻) from ∀𝑝 ∈ +

𝑖 ⧵ {𝑖}.
Step 4: For: 𝜏 = 𝑘 +𝐻 − 1,… , 𝑘

Step 4.1: Transmit: 𝐑𝑖(𝜏),𝐁𝑖(𝜏) to ∀𝑝 ∈ −
𝑖 ⧵ {𝑖};

𝐐𝑝(𝜏 + 1)1∕2𝐇𝑝,𝑖(𝜏 + 1),∀𝑝 ∈ +
𝑖 to ∀𝑞 ∈ −

𝑖 ⧵ {𝑖};
If: 𝜏 ≠ 𝑘

𝐐𝑖(𝜏)1∕2𝐇𝑖,𝑝(𝜏),∀𝑝 ∈ −
𝑖 to ∀𝑝 ∈ −

𝑖 ⧵ {𝑖};
End if
If: 𝜏 ≠ 𝑘 +𝐻 − 1

𝐑𝑝(𝜏 + 1),𝐁𝑝(𝜏 + 1),∀𝑝 ∈ +
𝑖 to ∀𝑞 ∈ −

𝑖 ⧵ {𝑖};
𝐀𝑖(𝜏 + 1) to ∀𝑝 ∈ −

𝑖 ;
𝐊𝑝,𝑖(𝜏 + 1),∀𝑝 ∈ +

𝑖 to ∀𝑞 ∈ −
𝑖 ⧵ {𝑖};

𝐏𝑖,(𝑝,𝑞)(𝜏 + 1) for some (𝑝, 𝑞) ∈ 𝜙𝑖 to ∀𝑙 ∈ −
𝑖 ⧵ {𝑖}.

End if
Step 4.2: Receive: 𝐑𝑝(𝜏),𝐁𝑝(𝜏) from ∀𝑝 ∈ +

𝑖 ⧵ {𝑖};
𝐐𝑝(𝜏 + 1)1∕2𝐇𝑟,𝑝(𝜏 + 1),∀𝑟 ∈ +

𝑖 from ∀𝑝 ∈ +
𝑖 ⧵ {𝑖};

If: 𝜏 ≠ 𝑘
𝐐𝑝(𝜏)1∕2𝐇𝑝,𝑖(𝜏),∀𝑝 ∈ +

𝑖 from 𝑝 ∈ +
𝑖 ⧵ {𝑖};

End if
If: 𝜏 ≠ 𝑘 +𝐻 − 1

𝐑𝑟(𝜏 + 1),𝐁𝑟(𝜏 + 1),∀𝑟 ∈ +
𝑝 from ∀𝑝 ∈ +

𝑖 ⧵ {𝑖};
𝐀𝑝(𝜏 + 1) from 𝑝 ∈ −

𝑖 ;
𝐊𝑟,𝑝(𝜏 + 1),∀𝑟 ∈ +

𝑝 from ∀𝑝 ∈ +
𝑖 ⧵ {𝑖};

𝐏𝑝,(𝑟,𝑠)(𝜏 + 1) for some (𝑟, 𝑠) ∈ 𝜙𝑝 from ∀𝑝 ∈ +
𝑖 ⧵ {𝑖}.

End if
Step 4.3: Compute:

If: 𝜏 = 𝑘 +𝐻 − 1
𝐏𝑖,(𝑝,𝑞)(𝜏 + 1) ←

∑

𝑟∈+
𝑝 ∩+

𝑞
𝐇𝑇
𝑟,𝑝(𝜏 + 1)𝐐𝑟(𝜏 + 1)𝐇𝑟,𝑞(𝜏 + 1),∀(𝑝, 𝑞) ∈ 𝜙𝑖;

Else
Compute 𝐏𝑖,(𝑝,𝑞)(𝜏 + 1)∀(𝑝, 𝑞) ∈ 𝜙𝑖 making use of (19).

End if
Step 4.4: Compute:

𝐒𝑝,𝑞(𝜏) ← 𝐁𝑇𝑝 (𝜏)𝐏𝑖,(𝑝,𝑞)(𝜏 + 1)𝐁𝑞(𝜏) + 𝜹𝑝𝑞𝐑𝑞(𝜏),∀(𝑝, 𝑞) ∈ 𝜙𝑖;
Compute 𝐒̃𝑖(𝜏) and 𝐏̃𝑖(𝜏 + 1) making use of (15) and (16);
𝐊̃𝑖(𝜏) ← 𝐒̃𝑖(𝜏)−1𝐏̃𝑖(𝜏 + 1);

End for
Step 5: Transmit: 𝐊𝑝,𝑖(𝜏), 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1 to ∀𝑝 ∈ +

𝑖 ⧵ {𝑖}.
Step 6: Receive: 𝐊𝑖,𝑝(𝜏), 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1 from ∀𝑝 ∈ −

𝑖 ⧵ {𝑖}.
Fig. 2. Illustration of scheduling of Algorithm 1 over a timeline.
i

with the number of systems in the whole network, the communication
complexity of each system grows with (1) with 𝑁 .

Third, according to Algorithm 1, each system 𝑖 has to store in
emory: (i) the matrices that model the dynamics of 𝑖 over the
indow {𝑘,… , 𝑘 + 𝐻 − 1}; (ii) the tracking output and control input
eighting matrices of 𝑖; (iii) 𝐏𝑖,(𝑝,𝑞)(𝜏 +1), with (𝑝, 𝑞) ∈ 𝜙𝑖; and (iv) the

equences of controller gains 𝐊 (𝜏),∀𝑝 ∈ −, 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1 and
8

𝑖,𝑝 𝑖
𝐊𝑝,𝑖(𝜏),∀𝑝 ∈ +
𝑖 , 𝜏 = 𝑘,… , 𝑘+𝐻−1. The data storage complexity of these

s: (i) 
(

max
(

𝑛1, 𝑚1, 𝜈−1 𝑜1
)

𝑛𝐻
)

; (ii) 
(

max
(

𝑚2
1, 𝑜

2
1
)

𝐻
)

; (iii) ((𝜈+1 )
2𝑛21);

and (iv) (𝑚1𝑛1max(𝜈+1 , 𝜈
−
1 )𝐻), respectively. Even though some aux-

iliary variables are required to be handled at each iteration, their
memory footprint is lower than the previously mentioned variables.
Hence, the data storage complexity of each system grows with (1) with
𝑁 .
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Fourth, the most intensive computations of Algorithm 1 are the
propagation of 𝐏𝑖,(𝑝,𝑞)(𝜏), with (𝑝, 𝑞) ∈ 𝜙𝑖, in Step 4.3. These computa-
tions require ((𝜈−1 )

4𝑛31) floating-point operations in total, which grows
ith (1) with 𝑁 .

To conclude, Algorithm 1 abides by the communication, compu-
ational, and memory constraints detailed in Section 2.3. In Pedroso
nd Batista (2023a) a decentralized RHC solution is also devised for
etworks of systems with LTV dynamics. However, using the method
roposed therein, the global synthesis would have to be replicated in
ach computational unit, which violates Constraints 2, 3, and 4 put
orward in Section 2.3. Therefore, the proposed solution makes great
trides towards the implementation feasibility of decentralized control
olutions over very large-scale networks.

.5. Extension to time-varying coupling topologies

Oftentimes, the tracking output couplings between systems vary
ith time due to: (i) the failure of systems of the network; (ii) the

ntroduction of new systems in the network; or (iii) switching tracking
onfigurations. The distributed and decentralized control solution is
ow extended to accommodate a time-varying tracking output coupling
opology. In that regard, consider a time-varying directed graph (𝑘),
ith time-varying in-degree 𝜈−𝑖 (𝑘), in-neighborhood −

𝑖 (𝑘), out-degree
𝜈+𝑖 (𝑘), out-neighborhood +

𝑖 (𝑘), and define 𝜙𝑖(𝑘) and 𝜓𝑖(𝑘) analogously
to (17) and (18), respectively, for system 𝑖.

Algorithm 2, proposed in Appendix, is the extension of Algorithm
1 to a time-varying tracking output coupling topology. Even though
such extension is quite straightforward as far as distributing the gain
synthesis across of the systems is concerned, that is not the case for
the scheduling of the computations over time. Recall the scheduling
procedure proposed in Section 3.3. It is possible to point out that the
fact that the computation of the RHC gains over the window {𝑘,… , 𝑘+
𝐻 −1} must start at 𝑡 = 𝑘𝑇𝑐 −𝛥−, requires that at 𝑡 = 𝑘𝑇𝑐 −𝛥− a system
𝑖 receives data through communication from 𝑝, with 𝑝 ∈ +

𝑖 (𝑘+𝐻).
That is, at 𝑡 = 𝑘𝑇𝑐 − 𝛥− communication between 𝑖 and a system with

hich 𝑖 is coupled at 𝑡 = (𝑘 +𝐻)𝑇𝑐 is required. In most applications,
f two systems are coupled at a given time instant, communication
etween them is probably feasible at that time instant. However, at
given time instant, communication between two systems that are

oupled an interval of time 𝐻𝑇𝑐 + 𝛥− may later not be feasible due
to the changing spatial configuration of the network over time. For
example, consider the problem of maintaining a formation of unnamed
aerial vehicles (UAVs). At a given time instant, two UAVs may be
separated by an obstacle. If a tracking output coupling is expected to
be established between them in the future and if 𝐻 is required to be
large, then communication between them may be required when they
are still separated by the obstacle, which may be difficult to achieve. It
is important to point out that the effect of this aspect varies greatly
with the application in question. On one hand, in applications with
slowly time-varying coupling topologies and spatial configurations,
the communication requirements needed to implement the scheduling
procedure proposed in Section 3.3 are likely feasible. On the other
hand, in applications that, in the time frame of the receding hori-
zon window, there are significant spatial configuration changes that
impede communication links between systems, then some additional
considerations should be taken into account.

4. Application to onboard orbit control of LEO mega-
constellations

In this section, the distributed decentralized RHC algorithm devel-
oped in Section 3 is applied to the cooperative orbit control problem of
LEO mega-constellations. The scheme presented in this section is novel
and it is developed aiming for efficiency and fuel saving in a distributed
and decentralized framework. Unlike other approaches in the literature,
it follows the crucial constraints detailed in Section 2.3 for a feasible
real-time implementation in a very large-scale. The source code of
the numerical simulations is available in the DECENTER Toolbox at
https://decenter2021.github.io/examples/DDRHCStarlink/.
9
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4.1. Mega-constellation model

Consider a Walker constellation 𝑖 ∶ 𝑇 ∕𝑃∕𝐹 . It has a total of 𝑇 satel-
lites, evenly distributed over 𝑃 orbital planes at a nominal inclination 𝑖,
whose nominal relative phasing between adjacent planes is 𝛽 = 2𝜋𝐹∕𝑇 ,
where 𝐹 is the phasing parameter. The nominal orbits are circular and
have a semi-major axis of 𝑎̄. This constellation can be modeled as a
network of coupled systems, 𝑗 , each associated with a computational
unit 𝑗 , with 𝑗 = 1,… , 𝑇 . Let 𝐩𝑖 ∈ R3 and 𝐯𝑖 ∈ R3 denote the position
and velocity vectors, respectively, of 𝑖 expressed in the J2000 Earth
centered inertial (ECI) frame. The dynamics of each satellite of the
constellation are modeled independently, since there is no dynamical
coupling between them. Each satellite 𝑖 is equipped with Hall effect
thrusters, aligned according to the local TNW frame (𝑥 axis along the
velocity vector, 𝑧 axis along the orbit’s angular momentum vector, and
𝑦 axis completes the right-handed coordinate system) that generate a
force 𝐮𝑖 ∈ R3 expressed in the TNW local frame. Each thruster has a
maximum thrust, 𝐶𝑡1. The model of the dynamics of a single satellite
𝑖 is, thus, given by

⎧

⎪

⎨

⎪

⎩

𝐩̇𝑖 = 𝐯𝑖
𝐯̇𝑖 = −𝜇𝐩𝑖∕‖𝐩𝑖‖32 + 𝐚𝐽2𝑖 + 𝐚𝑃𝑖 + 𝐑𝐸𝐶𝐼𝑇𝑁𝑊 𝐮𝑖∕𝑚𝑖
𝑚̇𝑖 = −‖𝐮𝑖‖1∕(𝐼

𝑠𝑝
𝑖 𝑔0),

(20)

here 𝑚𝑖 denotes the mass of the satellite, 𝜇 denotes the gravitational
arameter of the Earth, 𝐚𝐽2𝑖 ∈ R3 and 𝐚𝑃𝑖 ∈ R3 denote the perturbation
ccelerations of the effect of 𝐽2 and all other perturbations, respec-
ively, 𝐑𝐸𝐶𝐼𝑇𝑁𝑊 denotes the rotation matrix from the TNW local frame
o the J2000 ECI frame, 𝐼𝑠𝑝𝑖 denotes the specific impulse of the Hall
ffect thrusters of 𝑖, and 𝑔0 denotes the standard gravity acceleration.

In this application, for control law synthesis purposes, the pa-
ameterization of the orbits of each satellite of the constellation is
chieved by the set of non-singular mean orbital elements for near-
ircular inclined orbits (𝑎, 𝑢, 𝑒𝑥, 𝑒𝑦, 𝑖, 𝛺), respectively semi-major axis,
ean argument of latitude, two eccentricity vector components, incli-
ation, and longitude of ascending node. These can be related with the
ore common Keplerian set (𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝑀), which has a singularity for

ircular orbits, with

𝑢 =𝑀 + 𝜔
𝑒𝑥 = 𝑒 cos𝜔
𝑒𝑦 = 𝑒 sin𝜔,

here 𝑒 denotes the eccentricity, 𝜔 denotes the argument of perigee,
nd 𝑀 denotes the mean anomaly. Denote the state of a satellite 𝑖,
ade up of the aforementioned six non-singular mean orbital elements,

y

𝑖(𝑡) =
[

𝑎𝑖(𝑡) 𝑢𝑖(𝑡) 𝑒𝑥𝑖(𝑡) 𝑒𝑦𝑖(𝑡) 𝑖𝑖(𝑡) 𝛺𝑖(𝑡)
]𝑇 .

The satellite orbital mechanics (20) are nonlinear and, thus, have to
e linearized to employ the distributed and decentralized method put
orward in this paper. The linearization of the dynamics of each satellite
s carried out about a nominal orbit. These are defined such that the
et of nominal orbits of all satellites makes up a consistent nominal
onstellation, in the sense that the nominal separations: (i) along-track;
ii) inter-plane; and (iii) in relative phasing between adjacent planes
re enforced. It is very important to remark that this nominal constel-
ation is used for linearization purposes only — it is not employed for
ounding-box tracking of each individual satellite at any point. The
ecessity of enforcing constellation-wide constraints in the definition of
ach nominal orbit is made clear in the formulation of the orbit control

roblem as a RHC problem in Section 4.2.

https://decenter2021.github.io/examples/DDRHCStarlink/
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The nominal state of 𝑖 at time instant 𝑡, 𝐱̄𝑖(𝑡) =
[

𝑎̄𝑖(𝑡) 𝑢̄𝑖(𝑡)
𝑒𝑥𝑖(𝑡) 𝑒𝑦𝑖(𝑡) 𝑖𝑖(𝑡) 𝛺̄𝑖(𝑡)

]𝑇 , is defined by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑎̄𝑖(𝑡) = 𝑎̄
𝑢̄𝑖(𝑡) = 𝑢̄𝑡0 + ((𝑖 − 1) mod 𝑇 ∕𝑃 ) 2𝜋𝑃∕𝑇

+⌊(𝑖 − 1)𝑃∕𝑇 ⌋2𝜋𝐹∕𝑇 + (𝑀̇ + 𝜔̇)(𝑡 − 𝑡0)
𝑒𝑥,𝑖(𝑡) = 0
𝑒𝑦,𝑖(𝑡) = 0
𝑖𝑖(𝑡) = 𝑖
𝛺̄𝑖(𝑡) = 𝛺̄𝑡0 + ⌊(𝑖 − 1)𝑃∕𝑇 ⌋2𝜋∕𝑃 + 𝛺̇(𝑡 − 𝑡0).

(21)

bove, 𝑀̇ , 𝜔̇, and 𝛺̇ are the secular rates, including the effect of 𝐽2, on
he mean anomaly, argument of perigee, and longitude of ascending
ode, respectively, which are given by Vallado (1997, Chapter 8)

̇ =
3𝑛̄𝑅2

⨁𝐽2

4𝑎̄2
(

3 sin2 𝑖 − 2
)

,

𝜔̇ =
3𝑛̄𝑅2

⨁𝐽2

4𝑎̄2
(

4 − 5 sin2 𝑖
)

,

and

𝛺̇ = −
3𝑛̄𝑅2

⨁𝐽2

2𝑎̄2
cos 𝑖,

for a nominal orbit, where 𝑛̄ ∶=
√

𝜇∕𝑎̄3, and 𝑅⨁ denotes the Earth’s
mean equatorial radius. Note that the nominal orbits of all satellites in
(21) depend on three constellation-wise parameters (𝑡0, 𝑢̄𝑡0 , 𝛺̄𝑡0 ), whose
physical meaning is that the nominal orbit of 1 has mean argument
of latitude 𝑢̄𝑡0 and longitude of ascending node 𝛺̄𝑡0 at time instant
𝑡0. These three parameters are designed herein as the anchor of the
nominal constellation.

There are a few aspects worth pointing out regarding the anchor
of the nominal constellation. First, all satellites must agree on an
anchor for the nominal constellation at any time instant. Second, to
minimize linearization errors, the anchor should be selected such that
the nominal position of each satellite is as close as possible to their
actual position. Thus, since the position of the satellites drifts away
from their nominal position with time, due to neglected secular effects,
other perturbations, and maneuvers, the anchor must be updated from
time to time. Third, note that the evolution of the nominal states takes
the effect of the Earth’s oblateness into account, which significantly
decreases the frequency with which the anchor has to be updated.
Fourth, the computation of the anchor for a time instant 𝑡0 should be
performed in accordance with an optimization problem of the form

minimize
𝑢̄𝑡0 ,𝛺̄𝑡0

𝑇
∑

𝑖=1

(

𝛼
(

𝑢𝑖(𝑡0) − 𝑢̄𝑖(𝑡0)
)

+ 𝛼
(

𝛺𝑖(𝑡0) − 𝛺̄𝑖(𝑡0)
))

,

where 𝛼 ∶ R → R is a convex function. Given that 𝑢̄𝑖(𝑡0) does not depend
on 𝛺̄𝑡0 and 𝛺̄𝑖(𝑡0) does not depend on 𝑢̄𝑡0 , the optimization above can
be decoupled into two problems: one corresponding to 𝑢̄𝑡0 and other to
𝛺̄𝑡0 . Fifth, for the sake of simplicity, in this application, 𝛼(⋅) = (⋅)2 is
chosen, which leads to the closed-form solution

⎧

⎪

⎨

⎪

⎩

𝑢̄𝑡0 =
∑𝑇
𝑖=1

(

𝑢𝑖(𝑡0) − ((𝑖 − 1) mod 𝑇 ∕𝑃 ) 2𝜋𝑃∕𝑇
− ⌊(𝑖 − 1)𝑃∕𝑇 ⌋2𝜋𝐹∕𝑇 )

𝛺̄𝑡0 =
∑𝑇
𝑖=1

(

𝛺𝑖(𝑡0) − ⌊(𝑖 − 1)𝑃∕𝑇 ⌋2𝜋∕𝑃
)

.

(22)

However, to improve the robustness to outliers, the 𝓁1 norm, i.e., 𝛼(⋅) =
| ⋅ |, or Huber loss function could be used instead, still leading to
a convex optimization problem. Sixth, even though the optimization
problem above cannot be easily decoupled to be distributed across the
computational units of the satellites in the network, it is not a serious
issue, since it is only required to be solved sporadically. Thus, it can
either be: (i) computed in a centralized node and then the solution
broadcast to the network; or (ii) solved distributively over a period
10
f time making use of distributed gradient methods with asymptotic
onsensus guarantees (Jakovetić et al., 2014). It is worth pointing out
hat a new anchor (𝑡0, 𝑢̄𝑡0 , 𝛺̄𝑡0 ) can be used starting at 𝑡 = 𝑡0+𝛥, where 𝛥
an be as large as necessary to allow for communication and centralized
r cooperative computations.

The evolution of the state of 𝑖 is linearized about the aforemen-
ioned nominal orbits, defining a relative position 𝛿𝐱𝑖(𝑡) based the set
f orbital elements 𝛿𝐱𝑖(𝑡) ∶= [𝑎𝑖(𝑡) 𝛿𝑢𝑖(𝑡) 𝛿𝑒𝑥,𝑖(𝑡) 𝛿𝑒𝑦,𝑖(𝑡) 𝛿𝑖𝑖(𝑡) 𝛿𝛺𝑖(𝑡)],

introduced in D’Amico (2010), which is defined as

𝛿𝐱𝑖(𝑡) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑖(𝑡)∕𝑎̄𝑖(𝑡) − 1
𝑢𝑖(𝑡) − 𝑢̄𝑖(𝑡) +

(

𝛺𝑖(𝑡) − 𝛺̄𝑖(𝑡)
)

cos 𝑖𝑖(𝑡)
𝑒𝑥,𝑖(𝑡) − 𝑒𝑥,𝑖(𝑡)
𝑒𝑦,𝑖(𝑡) − 𝑒𝑦,𝑖(𝑡)
𝑖𝑖(𝑡) − 𝑖𝑖(𝑡)

(

𝛺𝑖(𝑡) − 𝛺̄𝑖(𝑡)
)

sin 𝑖𝑖(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

This set parameterizes the position of the satellite, 𝐱𝑖(𝑡), in relation
to its nominal position, 𝐱̄𝑖(𝑡). In Di Mauro et al. (2018), Koenig et al.
(2016) and Sullivan et al. (2016), the dynamics (20), taking the effect
of 𝐽2 into account but neglecting the remaining perturbations, are
linearized about near-circular nominal orbits. Making use of Floquet
theory, system transition and convolution matrices are derived to write
the discrete-time LTV system

𝛿𝐱𝑖((𝑘 + 1)𝑇𝑐 ) = 𝐀𝑖(𝑘)𝛿𝐱𝑖(𝑘𝑇𝑐 ) + 𝐁𝑖(𝑘)𝐮𝑖(𝑘𝑇𝑐 )∕𝑚𝑖(𝑘𝑇𝑐 ) (24)

with a sampling time 𝑇𝑐 and assuming that 𝐮𝑖(𝑡) and 𝑚𝑖(𝑡) remain con-
stant over each interval

[

𝑘𝑇𝑐 ; (𝑘 + 1)𝑇𝑐
[

. Given that electric propulsion is
employed, which has very reduced propellant mass rates, the constant
mass approximation is very reasonable (as an example, the Hall effect
thrusters considered in the illustrative simulations in the sequel reach
a mass rate of the order of 10−6 kg/s at full throttle). Henceforth, to
alleviate the notation, the continuous time instant 𝑡 = 𝑘𝑇𝑐 is denoted
by the discrete-time index 𝑘. As an example, 𝛿𝐱𝑖(𝑘𝑇𝑐 ) and 𝐮𝑖(𝑘𝑇𝑐 ) are
denoted by 𝛿𝐱𝑖(𝑘) and 𝐮𝑖(𝑘), respectively. For circular nominal orbits
and following the notation herein, the state transition matrix 𝐀𝑖(𝑘) is
given, according to Di Mauro et al. (2018), by

𝐀𝑖(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
−𝛬̄𝑇𝑐 1 0 0 −4𝐾̄𝑇𝑐 sin 2𝑖 0
0 0 cos𝛥𝜔 − sin𝛥𝜔 0 0
0 0 sin𝛥𝜔 cos𝛥𝜔 0 0
0 0 0 0 1 0

7
2 𝐾̄𝑇𝑐 sin 2𝑖 0 0 0 2𝐾̄𝑇𝑐 sin

2 𝑖 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

nd the convolution matrix 𝐁𝑖(𝑘) by

𝑖(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝛥𝑢
𝑛̄𝑎̄𝑊̄ 0 0

− 𝛬̄𝛥𝑢2

𝑛̄𝑎̄𝑊̄ 2
2𝛥𝑢
𝑛̄𝑎̄𝑊̄ 𝛹2,3

2𝛹4,2 𝛹3,2 0

−2𝛹3,2 𝛹4,2 0

0 0 𝛹5,3
7
2
𝐾̄𝛥𝑢2 sin 2𝑖
𝑛̄𝑎̄𝑊̄ 2 0 𝛹6,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (25)

here

2,3 ∶=
4𝐾̄ sin 2𝑖
𝑛̄𝑎̄𝑊̄ 2

(

cos(𝑢̄𝑖(𝑘𝑇𝑐 + 𝑇𝑐 )) − cos(𝑢̄𝑖(𝑘𝑇𝑐 )) + sin(𝑢̄𝑖(𝑘𝑇𝑐 ))𝛥𝑢
)

,

𝛹3,2 ∶=
cos(𝑢̄𝑖(𝑘𝑇𝑐 + 𝑇𝑐 )) − cos(𝑢̄𝑖(𝑘𝑇𝑐 ) + 𝐶̄𝛥𝑢)

𝑛̄𝑎̄(1 − 𝐶̄)𝑊̄
,

𝛹4,2 ∶=
sin(𝑢̄𝑖(𝑘𝑇𝑐 + 𝑇𝑐 )) − sin(𝑢̄𝑖(𝑘𝑇𝑐 ) + 𝐶̄𝛥𝑢)

𝑛̄𝑎̄(1 − 𝐶̄)𝑊̄
,

𝛹5,3 ∶=
sin(𝑢̄𝑖(𝑘𝑇𝑐 + 𝑇𝑐 )) − sin(𝑢̄𝑖(𝑘𝑇𝑐 ))

𝑛̄𝑎̄𝑊̄
,

𝛹6,3 ∶= − 𝑊̄ + 2𝐾̄ sin2 𝑖
𝑛̄𝑎̄𝑊̄ 2

(cos(𝑢̄𝑖(𝑘𝑇𝑐 + 𝑇𝑐 )) − cos(𝑢̄𝑖(𝑘𝑇𝑐 )))

− 2𝐾̄ sin2 𝑖 sin(𝑢̄ (𝑘𝑇 ))𝛥𝑢∕
(

𝑛̄𝑎̄𝑊̄ 2) ,
𝑖 𝑐
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𝛥𝑢 ∶= 𝑊̄ 𝑇𝑐 ,

𝛥𝜔 ∶= 𝐾̄(5 cos2 𝑖 − 1)𝑇𝑐 ,

𝐾̄ ∶= (3∕4)𝑛̄𝑅2
⨁𝐽2∕𝑎̄2,

𝛬̄ ∶= (3∕2)𝑛̄ + (7∕2)𝐾̄(3 cos2 𝑖 − 1),

𝑊̄ ∶= 𝑛̄ + 𝐾̄(8 cos2 𝑖 − 2), and
𝐶̄ ∶= 𝐾̄(5 cos2 𝑖 − 1)∕𝑊̄ .

Note that 𝐀𝑖(𝑘) is time-invariant and equal for all satellites, whereas
𝐁𝑖(𝑘) is time-varying and depends on the known nominal evolution
of the mean argument of latitude. Thus, these matrices can be easily
predicted in 𝑖 over a window of future time instants.

4.2. Controller implementation

Now that the constellation has been modeled as a LTV system, the
constellation orbit control problem has to be formulated as a RHC prob-
lem. A common approach is the bounding box method. In this scheme,
a reference position is generated for each satellite around which an
error box is defined. Whenever each satellite is inside the error box no
control input is used, but when it leaves said box the feedback control
is enabled to drive it inside of the error box. The main advantage
of this scheme is that the low-level control feedback loop of each
satellite is decoupled from the others. However, this decoupled scheme
tries to correct common secular and periodic perturbations that cause
the satellites to drift in relation to the nominal constellation but that
perturb the constellation shape to a much lesser extent, thus wasting
much-valuable fuel. If, to mitigate this effect, the nominal positions
are updated in real-time, then the global computation of consistent
nominal positions for each satellite has to be carried out in a centralized
node or cooperatively across the network in real-time. Nevertheless,
this alternative requires tremendous communication load, which is
unfeasible for large-scale networks.

In this paper, in an attempt to reduce fuel consumption and to
follow the communication, computational, and memory constraints
detailed in Section 2.3, a control scheme is devised such that the
satellites control their position relative to each other. On one hand,
the semi-major axis, eccentricity, and inclination of the orbit of each
satellite may be controlled in a decoupled fashion, thus an inertial
tracking output component given by

𝐳𝑖,𝑖𝑛(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎𝑖(𝑘) − 𝑎̄𝑖(𝑘)
𝑒𝑥,𝑖(𝑘) − 𝑒𝑥,𝑖(𝑘)
𝑒𝑦,𝑖(𝑘) − 𝑒𝑦,𝑖(𝑘)
𝑖𝑖(𝑘) − 𝑖𝑖(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎̄𝑖(𝑘)𝛿𝑎𝑖(𝑘)
𝛿𝑒𝑥,𝑖(𝑘)
𝛿𝑒𝑦,𝑖(𝑘)
𝛿𝑖𝑖(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

is considered for each satellite 𝑖, which is not coupled with any other
satellites. Note that driving 𝐳𝑖,𝑖𝑛(𝑘) to zero is equivalent to driving the
semi-major axis, eccentricity, and inclination to their nominal values.
On the other hand, to maintain the shape of the constellation, 𝛿𝑢𝑖(𝑘) and
𝛿𝛺𝑖(𝑘) ought to be controlled in relation to other satellites. To achieve
a distributed solution, each satellite ought to be coupled with only a
small number of satellites, which does not scale with the number of
satellites in the constellation. Furthermore, the satellites with which
𝑖 is coupled should be in its proximity, which is more convenient to
establish communication links. Thus, it is considered that two satellites
are coupled if they are within a tracking range 𝑅 of each other,
i.e., ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅, up to a maximum of |−

|max satellites in −
𝑖 . If

more than |−
|max − 1 satellites other than 𝑖 are within a tracking

range of 𝑖, only the |−
|max − 1 closest are considered. Since the

nominal evolution of the constellation is known, it is easy to predict the
coupling topology over a window of future time instants. Let −

𝑖 ⧵{𝑖} =
{

𝑗𝑖1,… , 𝑗𝑖
|−

𝑖 |−1

}

. Then the relative tracking output component is given
by

𝐳𝑖,𝑟𝑒𝑙(𝑘) ∶= col

(

𝐳𝑟𝑒𝑓
𝑖,𝑗𝑖

(𝑘),… , 𝐳𝑟𝑒𝑓
𝑖,𝑗𝑖

(𝑘)

)

11

1 |−
𝑖 |−1
with

𝐳𝑟𝑒𝑓𝑖,𝑗 (𝑘) ∶=

[

𝑢𝑖(𝑘) − 𝑢𝑗 (𝑘) −
(

𝑢̄𝑖(𝑘) − 𝑢̄𝑗 (𝑘)
)

𝛺𝑖(𝑘) −𝛺𝑗 (𝑘) −
(

𝛺̄𝑖(𝑘) − 𝛺̄𝑗 (𝑘)
)

]

=

[

𝛿𝑢𝑖(𝑘) − 𝛿𝑢𝑗 (𝑘) −
(

𝛿𝛺𝑖(𝑘) − 𝛿𝛺𝑗 (𝑘)
)

∕ tan 𝑖
(

𝛿𝛺𝑖(𝑘) − 𝛿𝛺𝑗 (𝑘)
)

∕ sin 𝑖

]

.

(26)

Thus, if (𝑘) contains a directed spanning tree, driving 𝐳𝑟𝑒𝑓𝑖,𝑗 (𝑘) to zero
maintains the shape of the constellation. It is interesting to point out
that the definition of the relative tracking output (26) makes use of the
nominal constellation just to retrieve the nominal angular spacing in 𝑢
and 𝛺 between 𝑖 and 𝑗 . Thus, the actual position of the satellite is
inevitably going to slowly drift away from the nominal constellation,
while maintaining the desired shape. Defining the tracking output of 𝑖
as 𝐳𝑖(𝑘) ∶= col(𝐳𝑖,𝑟𝑒𝑙(𝑘), 𝐳𝑖,𝑖𝑛(𝑘)), it can be written as

𝐳𝑖(𝑘) =
∑

𝑝∈−
𝑖

𝐇𝑖,𝑝(𝑘)𝛿𝐱𝑝(𝑘) (27)

with

𝐇𝑖,𝑝(𝑘) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

𝟏
|−

𝑖 |×1
⊗𝐇𝑟𝑒𝑙

𝐇𝑖𝑛

]

, 𝑝 = 𝑖

−

[

𝐥𝑘 ⊗𝐇𝑟𝑒𝑙

𝟎4×6

]

, 𝑝 = 𝑗𝑖,𝑘,

where

𝐇𝑖𝑛 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎̄ 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

and

𝐇𝑟𝑒𝑙 ∶=
[

0 1 0 0 0 −1∕ tan 𝑖
0 0 0 0 0 1∕ sin 𝑖

]

.

The tracking output weighting matrices 𝐐𝑖(𝑘) are of the form

𝐐𝑖(𝑘) ∶= diag
(

𝐈
|−

𝑖 |−1
⊗𝐐𝑟𝑒𝑙

𝑖 (𝑘),𝐐𝑖𝑛
𝑖 (𝑘)

)

,

where 𝐐𝑟𝑒𝑙
𝑖 (𝑘) ∈ R2×2, 𝐐𝑖𝑛

𝑖 (𝑘) ∈ R4×4, and 𝐑𝑖(𝑘) ∈ R3×3 are defined in
the sequel for the illustrative constellation under study.

The evolution of the state of each satellite state is modeled by
the LTV system (24) and the constellation orbit control problem is
formulated as the regulation of the tracking output (27). Thus, we
are in the conditions of applying the distributed and decentralized
RHC method put forward in Section 3, which abides by the commu-
nication, computational, and memory feasibility constraints detailed in
Section 2.3. The tracking output coupling graph (𝑘) is time-varying,
thus one has to follow Algorithm 2. Considering the convolution matrix
as defined in (25), one obtains the feedback law

𝐮𝑖(𝑘) = −𝑚𝑖(𝑘)
∑

𝑗∈−
𝑖 (𝑘)

𝐊𝑖,𝑗 (𝑘)𝛿𝐱𝑗 (𝑘).

However, more often than not, the relative mean orbital elements are
not readily available to each satellite from onboard sensors or filters. It
is more usual for each satellite to have access to its position and velocity
in a Cartesian coordinate system, which can be obtained making use
of a GNSS receiver, for instance. Although it is easy to compute the
relative mean orbital elements from the mean orbital elements and
nominal orbital elements according to (23), it is not straightforward
to obtain the mean orbital elements from the Cartesian position and
velocity. In fact, if ones applies the Keplerian orbit transformation
directly to the Cartesian position and velocity, one obtains osculating
orbital elements, which contain very significant short-period oscilla-
tions due to the Earth’s uneven gravity field and other perturbations.
For instance, in the conditions of the illustrative simulations in the
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Table 1
Parameters of the constellation.

Configuration

Inclination (𝑖) 53.0 deg
Number of satellites (𝑇 ) 1584
Number of orbital planes (𝑃 ) 72
Phasing parameter (𝐹 ) 17
Semi-major axis (𝑎̄) 6921.0 km
Eccentricity (𝑒) 0

Satellites

Initial mass 260 kg
Drag coefficient (𝐶𝐷) 2.2
Section area (𝐴) 24.0 m2

Solar radiation pressure coefficient (𝐶𝑅) 1.2
Solar radiation pressure area (SRPA) 10.0 m2

Electric thrusters

Maximum thrust (𝐶𝑡1) 0.068 N
Specific impulse (𝐼𝑠𝑝) 1640.0 s

sequel, these oscillations lead to differences between osculating and
mean orbital elements that reach 6 km in the semi-major axis. If one
neglected these differences, the controller feedback would attempt to
counteract these natural oscillations, thus wasting fuel and degrading
tracking performance. To aim for meter-level tracking accuracy and to
reduce fuel consumption, a transformation inspired in the one proposed
in Spiridonova et al. (2014) is employed to account for the Earth’s
uneven gravity field making use of the spherical harmonic expansion
up to a desired degree, which is the main source of these oscillations.
An open-source MATLAB implementation and thorough documenta-
tion of this transformation is available in the osculating2mean toolbox
t https://github.com/decenter2021/osculating2mean, which is based
n Eckstein and Hechler (1970), Hwang (2001), Hwang and Hwang
2002) and Kaula (1966). In the simulation results in the sequel, the
arth’s gravity field EGM96 spherical harmonic expansion (Lemoine
t al., 1998) up to degree and order 12 is employed.

.3. Illustrative mega-constellation and tuning

The illustrative mega-constellation of a single shell, inspired in
he first shell of the Starlink constellation, was chosen to assess the
erformance of the method devised in this paper. In this section, the
llustrative mega-constellation is described and the parameters of the
ontrol solution are tuned. The constellation is a Walker 53.0 deg ∶
584∕72∕17. The phasing parameter of this Starlink shell is chosen so
hat the minimum distance between two satellites is maximized (Liang
t al., 2021). Table 1 presents the parameters that characterize this
hell. All satellites are assumed to be identical.

Fig. 3 depicts the minimum, maximum, and average number of
atellites within tracking output coupling range among all satellites
s a function of 𝑅, at 0 Dynamical Barycentric Time (TDB) seconds
ince J2000. A tracking output coupling range of 𝑅 = 750 km is

considered, which enables all satellites to establish a tracking output
coupling with, at least, another satellite at any time. The maximum
in-neighborhood cardinality is set to |−

|max = 6, which allows for
ach satellite to establish tracking output couplings with up to 5 other
atellites. In Fig. 4, a snapshot of the projection of the position of each
atellite of the constellation over the Earth’s surface, as well as the
racking output couplings, at 0 TDB seconds since J2000 is shown. An
nimation of the evolution of the ground track of the constellation and
f the tracking output couplings can be viewed in the website of the
ECENTER Toolbox. It is interesting to note that, due to the higher
ensity of satellites at extreme latitudes, much more couplings are
stablished. This fact allows for more accurate control in these regions,
hich is desirable to avoid collisions.

The control discretization time is set to 𝑇𝑐 = 10 s, which is small
nough to achieve a good approximation of the continuous-time non-
inear dynamics model and large enough such that the control input
12
Fig. 3. Number of satellites within ISL range at 0 TDB seconds since J2000.

update frequency is attainable by the Hall effect thrusters. The tracking
output coupling topology varies greatly with time, thus the parameters
𝐻 and 𝑑 of the scheduling of the RHC distributed and decentralized
lgorithm have to be tuned thoughtfully, according to the limitations
nd communication requirements pointed out in Section 3.5. The in-
erval of time between allowed communications is set to 𝑇𝑡 = 1 s,
hich is the period of GNSS signals and the sampling time of a filter

elying on them. Due to the curvature of the Earth and the low altitude
f this LEO shell, the satellites quickly lose line-of-sight between each
ther. Therefore, at a given time instant, communication between two
atellites that are coupled an interval of time later is not necessarily
easible. The approximate theoretical line-of-sight range such that the
SL do not enter the atmosphere any lower than the Thermosphere is
iven by 𝑅𝐿𝑂𝑆 = 2

√

𝑎̄2 − (𝑅⨁ + 80 km)2 = 5, 014 km (Bhattacherjee
& Singla, 2019). This range is supported by an ISL system, since
multiple laser ISLs of up to 4900 km have been reported between LEO
satellites since 2008 (Sodnik et al., 2010). To evaluate the volatility of
tracking couplings between satellites, a pair of satellites that establishes
a tracking coupling in a particular time instant is chosen at random and
then the positions of these satellites are backtracked until they are out
of line-of-sight range. These procedure is repeated several times. Fig. 5
depicts an histogram of the interval of time that the pairs of satellites
remained in line-of-sight range.

Consider the computation of the RHC gains over a generic window
{𝑘,… , 𝑘 + 𝐻 − 1}, according to the scheduling solution proposed in
Section 3.5. The computation of this window starts at 𝑡𝑠 = 𝑘𝑇𝑐−(𝐻+2)𝑇𝑡

ith the computation of the gains at its end, which corresponds to
ime instant 𝑡𝑒 = 𝑘𝑇𝑐 + 𝐻𝑇𝑐 . If none of the satellites that are coupled
t 𝑡𝑒 are in line-of-sight at 𝑡𝑠, then it is pointless to consider such
arameter 𝐻 , since the restricted coupling neighborhood (A.1) of each
atellite would not contain any other satellites due to communication
onstraints. Notice that, in Fig. 5, no pair of satellites remained in line-
f-sight range for more than 𝛥𝑡𝑚𝑎𝑥 = 1320 s. Therefore, the constraint

𝐻 + 2)𝑇𝑡 +𝐻𝑇𝑐 < 𝛥𝑡𝑚𝑎𝑥 (28)

rises from this observation. Likewise, no restriction due to commu-
ication requirements can be enforced for the first 𝑑 discrete time
nstants of each RHC finite-window, as concluded in Section 3.5. The
omputation of the first 𝑑 gains of the window starts at 𝑡𝑠 = 𝑘𝑇𝑐 −
(𝑑 + 1)𝑇𝑡 with the computation of the gain that corresponds to time
nstant 𝑡𝑒 = 𝑘𝑇𝑐 + 𝑑𝑇𝑐 . To ensure that the communication requirements
are met, the satellites that are coupled at 𝑡𝑒 must be in line-of-sight, at

https://github.com/decenter2021/osculating2mean
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Fig. 4. Snapshot of ground track and ISL of the simulated constellation at 0 TDB seconds since J2000.
Fig. 5. Intervals of time two satellites are in line-of-sight range before establishing a
tracking coupling.

least, since 𝑡𝑠. From Fig. 5, the minimum time for the maintenance of
line-of-sight is 𝛥𝑡𝑚𝑖𝑛 = 360 s. Thus, the constraint

(𝑑 + 1)𝑇𝑡 + 𝑇𝑐𝑑 < 𝛥𝑡𝑚𝑖𝑛. (29)

arises from this observation. After algebraic manipulation of (28) and
(29) and considering non-overlapping computation windows, as de-
scribed in Section 3.3, one obtains

⎧

⎪

⎨

⎪

⎩

𝐻 < (𝛥𝑡𝑚𝑎𝑥 − 2𝑇𝑡)∕(𝑇𝑡 + 𝑇𝑐 )
𝑑 < (𝛥𝑡𝑚𝑖𝑛 − 𝑇𝑡)∕(𝑇𝑡 + 𝑇𝑐 )
𝑑 ≥ (𝐻 + 2)𝑇𝑡∕𝑇𝑐

=

⎧

⎪

⎨

⎪

⎩

𝐻 < 120.7
𝑑 < 32.6
𝑑 ≥ 0.2 +𝐻∕10 .

The parameters 𝐻 = 100 and 𝑑 = 25 were chosen from the rather tight
constraints above. Note that these are still valid even if 𝑇𝑡 is doubled.

The weighting matrices 𝐐𝑟𝑒𝑙
𝑖 (𝑘) ∈ R2×2, 𝐐𝑖𝑛

𝑖 (𝑘) ∈ R4×4, and 𝐑𝑖(𝑘) ∈
R3×3 were adjusted to physically meaningful orders of magnitude
and set to 𝐐𝑟𝑒𝑙

𝑖 (𝑘) = (1∕10−4)2𝐈, 𝐐𝑖𝑛
𝑖 (𝑘) = diag(1∕(𝑎̄10−4)2, 1∕(0.5 ×

10−2)2𝐈 , 1∕(10−2)2), and 𝐑 (𝑘) = (1∕𝐶 )2𝐈 .
13

2 𝑖 𝑡1 2
4.4. Simulation results

In this section, the simulation results are presented for the afore-
mentioned illustrative mega-constellation. The numerical simulation
was carried out employing the high-fidelity TU Delft’s Astrodynamic
Toolbox1 (TUDAT) (Kumar et al., 2012). NASA’s SPICE ephemerides
are used for the orbit propagation and the following perturbations are
taken into account:

1. Earth’s gravity field EGM96 spherical harmonic expansion
(Lemoine et al., 1998) up to degree and order 24;

2. Atmospheric drag NRLMSISE-00 model (Picone et al., 2002),
assuming constant drag coefficient and section area;

3. Cannon ball solar radiation pressure, assuming constant reflec-
tivity coefficient and radiation area;

4. Third-body perturbations of the Sun, Moon, Venus, Mars, and
Jupiter.

The numerical propagation is assured by a fourth-order Runge–Kutta
integration method with fixed step-size of 𝑇𝑐 = 10 s. The feedback
control law computation is carried out in MATLAB. The tudat-matlab-
thrust-feedback package, available at https://github.com/decenter2021/
tudat-matlab-thrust-feedback, is employed to implement the thrust feed-
back interface between TUDAT and MATLAB. A scheme of the simula-
tion environment is depicted in Fig. 6.

The total number of states in this shell of the mega-constellation
amounts to 6 × 1584 = 9504, which is the dimension of the global
system of an equivalent centralized framework. Hence, implementing
a centralized control algorithm in real-time would require the manip-
ulation of very high-dimensional matrices. For example, 𝐏(𝜏), which
is not typically sparse, would occupy 722.6 × 106 bytes in double
precision. Furthermore, it would have to feature all-to-all communi-
cation of substantial data volumes over great distances via the MCC,
which requires several ground stations scattered throughout the planet.
Therefore, the extreme computational demands in real-time and vast
communication requirements make an equivalent centralized frame-
work entirely unfeasible. On top of that, it is also insightful to compare

1 TUDAT documentation available at https://docs.tudat.space/ and source
code at https://github.com/tudat-team/tudat-bundle/.

https://github.com/decenter2021/tudat-matlab-thrust-feedback
https://github.com/decenter2021/tudat-matlab-thrust-feedback
https://github.com/decenter2021/tudat-matlab-thrust-feedback
https://docs.tudat.space/
https://github.com/tudat-team/tudat-bundle/
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Fig. 6. Scheme of the simulation environment.

Fig. 7. Evolution of the MAE in the semi-major axis.

Fig. 8. Evolution of the MAE in eccentricity and inclination.
14
Fig. 9. Evolution of the MAE in mean argument of latitude and longitude of ascending
node.

the resource usage of the proposed solution in relation to state-of-the-
art decentralized solutions that could, in principle, be used to solve
the mega-constellation maintenance problem. First, the decentralized
methods that rely on a global synthesis procedure such as Farhood
et al. (2015) and Pedroso and Batista (2023a) are required to solve
LMIs and perform several algebraic manipulations, respectively, with
global matrices of the system dynamics at each discrete-time control
instant. However, due to the sheer size of this system, that is unfeasible
in a standard computational server. In fact, from the computational
analysis of an efficient implementation of the latter method, performed
in Pedroso and Batista (2021), one would estimate that each RHC
window would take 𝐻 × 3623.7 × 10−7 × 95042.770 ≈ 3.8 × 109 s to
be computed. Second, a control design procedure analogous to Luft
et al. (2018), whose memory requirements grow with the dimension
of the system, would require each individual system to store, just in
components of 𝐏(𝜏), 1584×62 ×8 ≈ 45.6×104 bytes in double precision.
The proposed solution only requires |−

|

2
max×6

2×8 ≈ 1.04×104 bytes in
double precision. This reduction of one order of magnitude is especially
relevant in stringent settings such satellite design. Moreover, using the
design method of Luft et al. (2018), this gap increases significantly as
one considers more shells and the memory requirements of each single
satellite increase as the number of satellites in the network increases.

A simulation of the mega-constellation during 12 orbital periods
is carried out. An anchor for the nominal constellation is computed
at 0 TDB seconds since J2000, according to (22). The anchor is not
updated during the simulation. The evolution of the mean absolute
error (MAE) in the semi-major axis, eccentricity, and inclination is
depicted in Figs. 7 and 8. To evaluate the performance of the relative
tracking between the satellites, the mean argument of latitude error,
𝑒𝑢𝑖 (𝑘), and longitude of ascending node error, 𝑒𝛺𝑖 (𝑘), are defined for
each satellite 𝑖. Consider an instantaneous hypothetical anchor, com-
puted according to (22), for each time instant 𝑘. These errors are
defined as 𝑒𝑢𝑖 (𝑘) ∶= 𝑢𝑖(𝑘) − 𝑢̄𝑖(𝑘) and 𝑒𝛺𝑖 (𝑘) ∶= 𝛺𝑖(𝑘) − 𝛺̄𝑖(𝑘), where
𝑢̄𝑖(𝑘) and 𝛺̄𝑖(𝑘) are computed according to (21) making use of the
aforementioned instantaneous hypothetical anchor for time instant 𝑘.
It is very important to remark that these anchors are only employed for
performance assessment purposes in a post-processing step, they are not
involved in the control law in any way. The evolution of the MAE of the
mean argument of latitude and longitude of ascending node is depicted
in Fig. 9. The steady-state MAE, obtained by averaging the MAE of the
last three orbital periods of the simulation, is depicted in Table 2.
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Fig. 10. Evolution of the semi-major axis tracking error, for satellite 1.

Fig. 11. Evolution of the eccentricity and inclination tracking errors, for satellite 1.

Fig. 12. Evolution of the components of the control input, for satellite 1.
15
Fig. 13. Trajectory of the mean argument of latitude and longitude of ascending node
relative tracking errors, for satellite 1.

Table 2
Steady-state MAE.

𝑎 − 𝑎̄ (m) 𝑒 𝑖 − 𝑖 (rad) 𝑎̄𝑒𝑢𝑖 (m) 𝑎̄𝑒𝛺𝑖
(m)

Steady-state MAE 2.887 m 5.554 × 10−4 2.450 × 10−4 4.253 3.582

First, it is visible that the satellites of the constellation are success-
fully driven to their nominal semi-major axis and relative separations,
despite the large initial errors. Second, although the method proposed
in this paper is designed for LTV systems under very strict communica-
tion, computational, and memory limitations, it is able to perform well
in a network of systems with highly nonlinear dynamics and realistic
disturbances. Indeed, the proposed solution is robust to uncertainty,
disturbances, and model-reality mismatch. Third, in this simulation
there was no need to update the anchor, confirming that its update
period is large enough to allow for either a centralized or distributed
computation. Fourth, it is visible in Table 2 that this solution reaches
meter-level accuracy, not only for the semi-major axis, but also for the
relative tracking components.

It is also interesting to analyze the evolution of a single satellite.
Figs. 10 and 11 show the evolution of the semi-major axis, eccentricity,
and inclination tracking errors and Fig. 12 depicts the evolution of the
components of the control input, all for satellite 1. It is possible to
notice that there is a steady-state error in the eccentricity and incli-
nation tracking, but it is not significant. Fig. 13 shows the trajectory
of the mean argument of latitude and longitude of ascending node
relative tracking errors. It is very interesting to remark that, even for
initial kilometer-level relative tracking errors, the proposed solution
successfully drives and maintains the shape of the constellation with
meter-level accuracy, as seen in Fig. 13. Given the very large initial
error, the control input is initially saturated, as depicted in Fig. 12.
Afterwards, when the relative error is driven to close to zero, the
control input is far from the saturation limits. Despite the fact that the
proposed method does not have any stability guarantees regarding the
saturated inputs, no stability issues arise in the numeric simulation.

5. Conclusion

Applications of very large-scale networks of dynamically decoupled
systems have been emerging in the fields of swarm robotics and net-
worked control, many of which have nonlinear dynamics. The feasible

implementation of control algorithms over these networks comes with
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Algorithm 2 One-step RHC algorithm for the local gain synthesis of a new window of gains at time instant 𝑘 in computational unit 𝑖 for a
time-varying coupling topology.
Output: 𝐊𝑖,𝑝(𝜏),∀𝑝 ∈ ̃−

𝑖 (𝜏), 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1
Step 1: Predict: ̃−

𝑖 (𝜏), ̃
−
𝑖 (𝜏), 𝜏 = 𝑘,… , 𝑘 +𝐻 , according to (A.1);

𝐀𝑖(𝜏),𝐁𝑖(𝜏), 𝐑𝑖(𝜏), 𝜏 = 𝑘,… , 𝑘 +𝐻 − 1;
𝐇𝑖,𝑝(𝜏),∀𝑝 ∈ ̃−

𝑖 (𝜏), 𝜏 = 𝑘 + 1,… , 𝑘 +𝐻 ;
𝐐𝑖(𝜏), 𝜏 = 𝑘 + 1,… , 𝑘 +𝐻 .

Step 2: Transmit: 𝐐𝑖(𝑘 +𝐻)1∕2𝐇𝑖,𝑝(𝑘 +𝐻),∀𝑝 ∈ ̃−
𝑖 (𝑘 +𝐻) to ∀𝑝 ∈ ̃−

𝑖 (𝑘 +𝐻) ⧵ {𝑖}.
Step 3: Receive: 𝐐𝑝(𝑘 +𝐻)1∕2𝐇𝑝,𝑖(𝑘 +𝐻) from ∀𝑝 ∈ ̃+

𝑖 (𝑘 +𝐻) ⧵ {𝑖}.
Step 4: For: 𝜏 = 𝑘 +𝐻 − 1,… , 𝑘

Step 4.1: Transmit: 𝐑𝑖(𝜏),𝐁𝑖(𝜏) to ∀𝑝 ∈ ̃−
𝑖 (𝜏) ⧵ {𝑖};

𝐐𝑝(𝜏 + 1)1∕2𝐇𝑝,𝑖(𝜏 + 1),∀𝑝 ∈ ̃+
𝑖 (𝜏 + 1) to ∀𝑞 ∈ ̃−

𝑖 (𝜏) ⧵ {𝑖};
If: 𝜏 ≠ 𝑘

𝐐𝑖(𝜏)1∕2𝐇𝑖,𝑝(𝜏),∀𝑝 ∈ ̃−
𝑖 (𝜏) to ∀𝑝 ∈ ̃−

𝑖 (𝜏) ⧵ {𝑖};
End if
If: 𝜏 ≠ 𝑘 +𝐻 − 1

𝐑𝑝(𝜏 + 1),𝐁𝑝(𝜏 + 1),∀𝑝 ∈ ̃+
𝑖 (𝜏 + 1) to ∀𝑞 ∈ ̃−

𝑖 (𝜏) ⧵ {𝑖};
𝐀𝑖(𝜏 + 1) to ∀𝑝 ∈ ̃−

𝑖 (𝜏);
𝐊𝑝,𝑖(𝜏 + 1),∀𝑝 ∈ ̃+

𝑖 (𝜏 + 1) to ∀𝑞 ∈ ̃−
𝑖 (𝜏) ⧵ {𝑖};

𝐏𝑖,(𝑝,𝑞)(𝜏 + 1) for some (𝑝, 𝑞) ∈ 𝜙𝑖(𝜏 + 1) to ∀𝑙 ∈ ̃−
𝑖 (𝜏) ⧵ {𝑖}.

End if
Step 4.2: Receive: 𝐑𝑝(𝜏),𝐁𝑝(𝜏) from ∀𝑝 ∈ ̃+

𝑖 (𝜏) ⧵ {𝑖};
𝐐𝑝(𝜏 + 1)1∕2𝐇𝑟,𝑝(𝜏 + 1),∀𝑟 ∈ ̃+

𝑖 (𝜏 + 1) from ∀𝑝 ∈ ̃+
𝑖 (𝜏) ⧵ {𝑖};

If: 𝜏 ≠ 𝑘
𝐐𝑝(𝜏)1∕2𝐇𝑝,𝑖(𝜏),∀𝑝 ∈ ̃+

𝑖 (𝜏) from 𝑝 ∈ ̃+
𝑖 (𝜏) ⧵ {𝑖};

End if
If: 𝜏 ≠ 𝑘 +𝐻 − 1

𝐑𝑟(𝜏 + 1),𝐁𝑟(𝜏 + 1),∀𝑟 ∈ ̃+
𝑝 (𝜏 + 1) from ∀𝑝 ∈ ̃+

𝑖 (𝜏) ⧵ {𝑖};
𝐀𝑝(𝜏 + 1) from 𝑝 ∈ ̃−

𝑖 (𝜏);
𝐊𝑟,𝑝(𝜏 + 1),∀𝑟 ∈ ̃+

𝑝 (𝜏 + 1) from ∀𝑝 ∈ ̃+
𝑖 (𝜏) ⧵ {𝑖};

𝐏𝑝,(𝑟,𝑠)(𝜏 + 1) for some (𝑟, 𝑠) ∈ 𝜙̃𝑝(𝜏 + 1) from ∀𝑝 ∈ ̃+
𝑖 (𝜏) ⧵ {𝑖}.

End if
Step 4.3: Compute:

If: 𝜏 = 𝑘 +𝐻 − 1

𝐏𝑖,(𝑝,𝑞)(𝜏 + 1) ←
∑

𝑟∈̃+
𝑝 (𝜏+1)∩̃+

𝑞 (𝜏+1)
𝐇𝑇
𝑟,𝑝(𝜏 + 1)𝐐𝑟(𝜏 + 1)𝐇𝑟,𝑞(𝜏 + 1), ∀(𝑝, 𝑞) ∈ 𝜙̃𝑖(𝜏);

Else
𝐏𝑖,(𝑝,𝑞)(𝜏 + 1) ←

∑

𝑟∈̃+
𝑝 (𝜏+1)∩̃+

𝑞 (𝜏+1)

(

𝐇𝑇
𝑟,𝑖(𝜏 + 1)𝐐𝑟(𝜏 + 1)𝐇𝑟,𝑗 (𝜏 + 1) +𝐊𝑇

𝑟,𝑖(𝜏 + 1)𝐑𝑟(𝜏 + 1)𝐊𝑟,𝑗 (𝜏 + 1)
)

+𝐖̃𝑝(𝑘 + 1)𝐏̃(𝑝,𝑞)
̃+
𝑖 (𝜏+1)

(𝜏 + 2)𝐖̃𝑇
𝑞 (𝑘), ∀(𝑝, 𝑞) ∈ 𝜙̃𝑖(𝜏).

End if
Step 4.4: Compute:

𝐒𝑝,𝑞(𝜏) ← 𝐁𝑇𝑝 (𝜏)𝐏𝑖,(𝑝,𝑞)(𝜏 + 1)𝐁𝑞(𝜏) + 𝜹𝑝𝑞𝐑𝑝(𝜏),∀(𝑝, 𝑞) ∈ 𝜙̃𝑖(𝜏);
Compute 𝐒̃𝑖(𝜏) and 𝐏̃𝑖(𝜏 + 1) making use of (15) and (16);
𝐊̃𝑖(𝜏) ← 𝐒̃𝑖(𝜏)−1𝐏̃𝑖(𝜏 + 1);

End for
Step 5: Transmit: 𝐊𝑝,𝑖(𝜏), 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1 to ∀𝑝 ∈ +

𝑖 (𝜏) ⧵ {𝑖}.
Step 6: Receive: 𝐊𝑖,𝑝(𝜏), 𝜏 = 𝑘,… , 𝑘 + 𝑑 − 1 from ∀𝑝 ∈ −

𝑖 (𝜏) ⧵ {𝑖}.
pressing challenges that arise from the scale of the network, which
impose limiting constraints regarding communication, computational
power, and memory. State-of-the-art receding horizon control solutions
fail to meet such constraints. In this paper, a decentralized receding
horizon control solution befitting these challenges is proposed. This
algorithm is devised to account for communication and computation
delays, only requires local communication and ensures that the com-
putational and memory requirements in each system do not scale with
the dimension of the network. As a means of assessing the performance
of the algorithm, it is applied to the orbit control problem of low
Earth orbit mega-constellations. The proposed method shows promising
performance for the orbit control problem of a shell of the Starlink
mega-constellation. Future work should focus on devising an approxi-
mation to enable a distributed gain synthesis that preserves consistency
and on obtaining stability guarantees.
16
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Appendix

The extension of Algorithm 1 to a time-varying tracking output cou-
pling topology is shown in Algorithm 2. Consider the in-neighborhood
and out-neighborhood −

𝑖 (𝜏) and +
𝑖 (𝜏), for 𝜏 = 𝑘,… , 𝑘 + 𝐻 , that

would be obtained if no restrictions on the establishment of the com-
munication links existed. Define 𝑖(𝜏) as the set of systems with which
system 𝑖 can establish a communication link, in an undirected sense,
at 𝑡 = 𝑘𝑇𝑐 − (𝜏 − 𝑘+ 2)𝑇𝑡, for 𝜏 = 𝑘,… , 𝑘+𝐻 . Then, consider instead an
in-neighborhood and out-neighborhood restricted to the set of systems
with which communication is feasible, i.e.,

̃±
𝑖 (𝜏) ∶= ±

𝑖 (𝜏) ∩ 𝑖(𝜏), (A.1)

for 𝜏 = 𝑘,… , 𝑘 + 𝐻 . Making use of these restricted neighborhoods,
the communication requirements in Algorithm 2 are feasible. Note
that 𝜙̃(𝜏) is defined analogously. It is important to point out that to
compute the first 𝑑 gains of the window, which are actually used to
compute the control input with (3), no restrictions can be enforced,
i.e., ±

𝑖 (𝜏) ⊆ 𝑖(𝜏). Therefore, 𝑑 should be sufficiently small to allow for
that. In Section 4, this scheme is applied to the mega-constellation orbit
control problem, for which the communication links between satellites
are heavily restricted by the Earth’s curvature.
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