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A B S T R A C T

This paper presents the development of a robust distributed and cooperative control algorithm for formation
tracking by teams of vehicles modeled as double integrators, and exemplifies its use through the application
to multirotor vehicles. To achieve coordination between the vehicles in a distributed manner, in the sense that
only local information is either exchanged or perceived, consensus-based protocols are considered. Consensus
protocols for agents modeled with up to three integrators are presented, and the third-order protocol is
analyzed under any time-invariant sensing or communication topology. The analysis seeks to determine exact
bounds on the coupling gains of the protocol that lead to convergence. To that end, an extension of the
Routh–Hurwitz criterion to polynomials with complex coefficients is used, leading to novel necessary and
sufficient conditions for convergence. Moreover, these novel bounds turn out to be a generalization of the
ones described in the literature for second-order consensus, as the latter can be recovered as a special case.
The effect of disturbances acting upon the agents is also analyzed and related to their ability to achieve robust
consensus in the sense that bounded disturbances do not lead to instability. Further results are derived for
the case of constant disturbances, a special case that is particularly relevant for formation control. The third-
order consensus protocol is then explored to incorporate integral action in a formation tracking controller
used for double integrator vehicles and thereby enable constant disturbance rejection. Finally, experiments
resulting from the application of the proposed control algorithms to multirotor vehicles are presented, in
order to validate the analysis and demonstrate the usefulness of this approach.
. Introduction

Formation control is an important topic of research in the coordi-
ated motion of multiple unmanned autonomous vehicles. Moving in
ormation can have several advantages on the overall system, such as
ncreased redundancy and robustness, and reduced cost. However, this
roblem presents several challenges, mainly related to the lack of total
nformation by each agent, but also to the desire to use a decentralized
pproach. In decentralized approaches, each agent makes its own deci-
ions based solely on local information, therefore a central controller,
oordinator or supervisor does not exist, making the problem more
hallenging. Despite the challenges, a decentralized approach is still
he one that presents more potential applications, since it provides
calability and robustness to the system.

A survey on the topic of multi-agent formation control can be found
n the work by Oh et al. (2015). There, the authors divide the formation
ontrol approaches into three categories, based mainly on the amount
f interactions needed and on the sensing capabilities of the vehicles.
hese categories are the position-, displacement-, and distance-based
pproaches. The position-based approach considers that each agent has

∗ Corresponding author.
E-mail addresses: pedro.trindade@isr.tecnico.ulisboa.pt (P. Trindade), pbatista@isr.tecnico.ulisboa.pt (P. Batista), rita@isr.tecnico.ulisboa.pt (R. Cunha).

access to measurements in the inertial frame (e.g. absolute position
measurements). In this case, each agent can be equipped with a control
law to drive its position to a desired position, thus achieving the
prescribed formation without the need to interact with others. This is,
however, the most demanding approach in terms of the sensing capa-
bility of each agent. The displacement-based approach considers that
the vehicles can only measure relative quantities (e.g., measurement of
the relative position or displacement to another vehicle), and that they
have a common reference for orientation. More interactions between
agents are thus required in order to overcome the reduced sensing capa-
bility. For agents modeled as single integrators, this approach is studied
under directed interaction topologies, for example, by Ren et al. (2004),
considering consensus-based protocols. For the case of agents modeled
as double integrators, it was studied, for example, by Ren and Atkins
(2007) and Han et al. (2017). Finally, in the distance-based approach,
it is assumed that agents only have access to relative measurements
and do not share a sense of orientation. Formations are stabilized
based only on the distance between the agents, not accounting for the
orientation of the formation. This approach is the less demanding in
terms of sensing capability of the agents. However, it requires the use
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Fig. 1. Two Intel Aero Ready To Fly quadrotors flying.

f more elaborate control laws. It is commonly studied under the use
f gradient control laws, which are defined using artificial potential
ields. For single integrator modeled agents, it has been studied by Krick
t al. (2008) and V. Dimarogonas and Johansson (2008), and for double
ntegrator modeled agents by Oh and Ahn (2014). An example of a
ifferent approach is the bearing-based formation control, described for
xample in the works by Zhao and Zelazo (2017), Ahn (2020) and Tang
t al. (2021).

In this work, it is assumed that the vehicles have access to mea-
urements of their orientation, and therefore, a displacement-based
pproach is considered, in which consensus protocols are typically used
o achieve coordination between the vehicles in a distributed manner.
he consensus problem, as the name entails, consists of driving a group
f agents, over a network, to an agreement on some value, considering
hat only local information is exchanged or perceived. A body of work
as been dedicated to the displacement-based approach, following the
roundbreaking results presented in the works by Fax and Murray
2004), Ren et al. (2004), Olfati-Saber and Murray (2004) and Ren and
tkins (2007). The work by Ren et al. (2004) is an example of this
pproach applied to vehicles modeled as single integrators. However,
wide variety of vehicles are modeled with second- or higher-order
odels. For that reason, consensus protocols for agents modeled by
ultiple integrators have been proposed in the literature. Second-

rder algorithms are well studied and can be applied, for example, to
ehicles actuated on acceleration. These were proposed and analyzed,
or example, by Ren and Atkins (2007), and later addressed with further
etail by both Zhu et al. (2009) and Yu et al. (2010). The work
y Ren and Atkins (2007) analyzes the convergence of a second-order
onsensus protocol and introduces a sufficient condition for consensus,
iven by a graphical condition and a conservative bound on a cou-
ling gain. A non-conservative bound is later introduced by both Zhu
t al. (2009) (which studies a general form second-order consensus
lgorithm) and Yu et al. (2010) (which also focuses on determining
n upper bound on the input delay for which consensus is achieved),
chieving a necessary and sufficient condition for consensus.

Several developments, such as the works by Ren et al. (2006), Ren
t al. (2007), Mukherjee and Zelazo (2019) and Tegling et al. (2019),
lso approached higher-order protocols. In one of these works (Ren
t al., 2007), the authors introduced a protocol for higher-order agent
ynamics and claim that there exists a set of coupling gains for the
roposed consensus protocol that leads to convergence, but make no
urther description on how these parameters influence the convergence.
t was only more recently that some works, such as the ones by Cao and
un (2014) and Huang et al. (2018), focused on third-order algorithms
pecifically. The work by Cao and Sun (2014) studies third-order con-
ensus for the case of undirected graphs. More recently, Huang et al.
2018) consider directed graphs, and attempt to extend the second-
rder results presented by Yu et al. (2010) to triple integrator agents,
ut do not provide exact bounds on the coupling gains that lead to
onsensus.
2

Considering the importance of developing robust control algorithms
for the coordinated motion of multiple unmanned autonomous ve-
hicles, this work seeks to develop distributed control algorithms for
formation tracking, and validate the devised solutions by exemplify-
ing their application to multirotor vehicles (see Fig. 1). Vehicles are
complex systems, and their dynamical models are subject to errors and
parameter uncertainties that can be perceived as disturbances to the
nominal system that is being considered. When vehicles are modeled as
double integrators, a third-order consensus protocol, in contrast with a
traditional second-order protocol, enables the use of integral action in
the formation controller, which enhances the system with the ability
to reject constant disturbances. This can be of paramount importance
in some scenarios, and is particularly useful for multirotor vehicles. For
this reason, a third-order consensus protocol is considered in this work.
Nonetheless, to overcome the gaps in the literature that is provided,
for example, in the works by Cao and Sun (2014) and Huang et al.
(2018), the third-order consensus protocol must be analyzed further.
Namely, it is necessary to deepen the analysis regarding robustness and
convergence conditions.

This paper presents an analysis of a third-order consensus protocol,
providing necessary and sufficient conditions for convergence by deter-
mining the exact bounds on the coupling gains that lead the group of
agents to consensus. These bounds provide novel criteria for the third-
order consensus protocol and turn out to be a generalization of the ones
described in the literature for second-order consensus, in the sense that
the latter can be recovered as a special case. The effect of disturbances
on the overall convergence of the system is also evaluated, with special
focus on constant disturbances. The results are applied to the formation
control problem in order to introduce integral action in the controller
for vehicles modeled as double integrators. To conclude the analysis,
the inclusion of goal seeking terms is studied.

Abbreviated statements, without proofs, of some of the results de-
tailed in this paper were previously presented by the authors (Trindade
et al., 2020). This paper includes the proofs that were previously
omitted, furthers the analysis concerning robustness in the presence
of bounded disturbances and constant disturbances, and enhances the
results concerning goal seeking terms.

The remainder of this paper is organized as follows. Section 2
presents the relevant notation, as well as some concepts of graph
theory, important in the context of this paper. The problem statement
is given in Section 3 and then, in Section 4, the consensus protocols of
interest are introduced, followed by a convergence analysis and some
illustrative examples. Section 5 details the application of the previously
introduced consensus protocols in the development of the formation
tracking controller, also followed by an example that illustrates these
results. Section 6 describes the application of the proposed algorithms
to multirotor vehicles for experimental validation and presents the
results. Finally, concluding remarks are provided in Section 7.

2. Preliminaries

2.1. Notation

The notation used throughout this paper is introduced here. Vectors
are set in lower case bold and matrices in upper case bold. The set of
real numbers is denoted by R, the subset of positive real numbers is
denoted by R+, and the set of real numbers except zero, i.e. R ⧵ {0}, is
denoted by R≠0. The set of complex numbers is denoted by C, and for
a complex number 𝑧 ∈ C, Re(𝑧) denotes its real part and Im(𝑧) denotes
its imaginary part. The 𝑚-dimensional Euclidean space is denoted by
R𝑚, and ‖𝐱‖𝑝 denotes the 𝑙𝑝-norm of a vector 𝐱 ∈ R𝑚. For 𝑝 = 2 (the
Euclidean norm) only ‖𝐱‖ is used. The dot notation is used to define
the time derivative (as in 𝐱̇), and the number of dots its order (e.g. 𝐱̈
denotes the second time derivative). The 𝑛×𝑛 identity matrix is denoted
by 𝐈𝑛, and 𝟎𝑛×𝑚 denotes an 𝑛 × 𝑚 matrix of zeros (when it is possible
to infer on the dimensions, only 𝟎 is used). Also, 𝟏𝑛 denotes the 𝑛 × 1
vector of ones, 𝑥̄ = 𝟏⊤𝑛 𝐱∕𝑛 denotes the average of the entries of a vector
𝐱 ∈ R𝑛, and 𝐞𝑖 ∈ R𝑛 is the vector with one in the 𝑖th component and
zeros elsewhere. Finally, the symbol ⊗ denotes the Kronecker product.
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2.2. Graph theory

When working with multi-agent systems, the communication net-
work is typically described using graph theory.

Definition 1. A directed graph , usually abbreviated to digraph,
consists of a pair of sets ( ,), where  is a non-empty finite set of
vertices, and  ∈ 2 is a finite set of ordered pairs of vertices, called
arcs.

An excellent and self-contained exposition on the theory of digraphs
considered in this work is provided by Veerman and Lyons (2020).
Some of the notation and terminology used here is borrowed from that
work. There, the authors consider undirected graphs as a specific case
of digraphs, where the main difference is that, in the case of undirected
graphs, arcs are unordered pairs of vertices. For that reason, definitions
are provided for digraphs only.

An arc, connecting a vertex 𝑖 to 𝑗, will be denoted by 𝑖 → 𝑗.
Informally, for an arc 𝑖 → 𝑗, one says that 𝑖 sends information to 𝑗,
or that 𝑗 ‘‘sees’’ 𝑖. A digraph is said to be simple if it does not contain
self-loops (vertices that see themselves). The set 𝑖 ⊆  of vertices seen
by 𝑖 (excluding itself) is called the neighborhood of 𝑖, and 𝑆 ⊆  is
the set of vertices that see themselves (have a self-loop). If a digraph is
weighted, the weight associated to an arc 𝑖 → 𝑗 is denoted by 𝑘𝑗←𝑖 ∈ R.
When there is an arc 𝑖 → 𝑗, then 𝑘𝑗←𝑖 > 0, and when there is no
arc, 𝑘𝑗←𝑖 = 0. These weights can be used to describe, for example,
the strength of the interactions between agents, or their capability to
exchange information. If the digraph is not weighted, then all weights
associated to arcs in the digraph are considered to be one.

Definition 2. A directed path is an ordered sequence of arcs, connect-
ing two distinct vertices in the digraph. Then:

(i) A digraph has a spanning tree when there is at least one vertex
that has a directed path to all others.

(ii) A digraph is strongly connected when for any pair of vertices
there is a directed path from one vertex to the other.

Definition 3. Consider a digraph  with 𝑛 vertices. Then:
(i) The (directed) Laplacian matrix 𝐋 =

[

𝑙𝑖𝑗
]

∈ R𝑛×𝑛 is defined as
𝑙𝑖𝑗 = −𝑘𝑖←𝑗 for 𝑖 ≠ 𝑗, and 𝑙𝑖𝑖 = −

∑

𝑗≠𝑖 𝑙𝑖𝑗 .
(ii) The generalized Laplacian matrix  is defined as  = 𝐋 + 𝐒,

where 𝐒 =
∑

𝑖∈𝑆 𝑘𝑖←𝑖𝐞𝑖𝐞
⊤
𝑖 is a diagonal matrix of self-loop

weights.

The Laplacian matrix has some relevant properties, such as null
row sum, meaning it has at least one null eigenvalue with eigenvector
𝟏𝑛. The following results present some relevant properties of both the
Laplacian and the generalized Laplacian matrices.

Lemma 1 (Ren et al., 2004). The Laplacian 𝐋 of a digraph  has a single
null eigenvalue and all other eigenvalues have positive real part if and only
if the digraph has a spanning tree.

Proposition 1. All eigenvalues of the generalized Laplacian  of a digraph
 = ( ,) that has a spanning tree have positive real part if and only if
one of the vertices with a directed path to all others has a self-loop.

Proof. The proof is presented in the Appendix B. □

3. Problem statement

The problem at hand consists in the development of a distributed
and cooperative control algorithm to enable a team of 𝑛 vehicles to
track a time-varying formation and converge to their desired position
in space. It is assumed that the desired position for each vehicle 𝑖 is
given as a function of time, i.e., a trajectory 𝐩𝐝𝑖 (𝑡) ∈ R3 is defined for

all 𝑡 > 0, with known and continuous first and second time derivatives.

3

As previously stated, dynamical models for vehicles are subject to
errors and parameter uncertainties that can be perceived as distur-
bances to the nominal system that is being considered. It is with that
in mind that each vehicle is modeled by
{

𝐩̇𝑖 = 𝐯𝑖
𝐯̇𝑖 = 𝐮𝑖 + 𝐝𝑖

, (1)

where 𝐩𝑖, 𝐯𝑖 ∈ R3 denote the position and velocity of the 𝑖th vehicle,
respectively, 𝐮𝑖 ∈ R3 is the control input of the vehicle, in this case, its
acceleration, and 𝐝𝑖 ∈ R3 is an unknown disturbance acting on the 𝑖th
vehicle.

Let 𝐩𝑖𝑗 ∶= (𝐩𝑖 − 𝐩𝑗 ) and 𝐩𝐝𝑖𝑗 ∶= (𝐩𝐝𝑖 − 𝐩𝐝𝑗 ) denote the relative position
and the desired relative position of vehicle 𝑖 with respect to vehicle
𝑗, respectively. In order to track a prescribed formation, the goal is
to have 𝐩𝑖𝑗 (𝑡) − 𝐩𝐝𝑖𝑗 (𝑡) → 𝟎 as 𝑡 → ∞. The vehicles should also seek
to asymptotically reach their desired position in space, i.e., to have
𝐩𝑖(𝑡) − 𝐩𝐝𝑖 (𝑡) → 𝟎 as 𝑡 → ∞. However, each vehicle is considered to
have limited information about the complete system. More specifically,
it is assumed that each vehicle has access to the relative position and
velocity of some of the other vehicles (its neighbors), and only a limited
set of vehicles has information about its own position and velocity.

4. Consensus protocols

Here, consensus protocols used for distributed coordination of mul-
tiple agents, communicating over a network described by a digraph
 = ( ,), are introduced. Firstly, consensus protocols for agents
with single and double integrator dynamics, previously described in the
literature, are presented. Then, a consensus protocol for agents with
triple integrator dynamics is introduced, followed by an analysis of its
convergence properties.

4.1. Single and double integrator dynamics

Consider a group of 𝑛 agents, each described by the single integrator
dynamics

𝛽̇𝑖 = 𝜇𝑖, (2)

with 𝛽𝑖, 𝜇𝑖 ∈ R, where 𝜇𝑖 is the control input of the agent. Recall that
if 𝑗 ∉ 𝑖 (i.e., 𝑗 is not seen by 𝑖), then by definition, 𝑘𝑖←𝑗 = 0. The
consensus protocol for this system is given by

𝜇𝑖 = −
∑

𝑗∈𝑖

𝑘𝑖←𝑗
(

𝛽𝑖 − 𝛽𝑗
)

= −
∑

𝑗≠𝑖
𝑘𝑖←𝑗

(

𝛽𝑖 − 𝛽𝑗
)

. (3)

The goal of protocol (3) is to guarantee that consensus is achieved,
i.e., |𝛽𝑖 − 𝛽𝑗 | → 0 as 𝑡 → ∞. Note that each agent 𝑖 only needs to know
the difference between its state and the state of its neighbors, (𝛽𝑖 − 𝛽𝑗 ),
and does not need to know its absolute state. Moreover, note that (3)
can be written in vector form using the Laplacian 𝐋 of the digraph ,
as 𝝁 = −𝐋𝜷, where 𝜷 =

[

𝛽1 ⋯ 𝛽𝑛
]⊤ ∈ R𝑛 and 𝝁 =

[

𝜇1 ⋯ 𝜇𝑛
]⊤ ∈ R𝑛.

Therefore, the feedback actuated system becomes 𝜷̇ = −𝐋𝜷. As shown,
for example, by Ren et al. (2004), the existence of a spanning tree on
the digraph which describes the interaction topology is a necessary and
sufficient condition for achieving consensus when agents are modeled
as single integrators.

Consider now a group of 𝑛 agents modeled as double integrators,
i.e.,
{

𝛼̇𝑖 = 𝛽𝑖
𝛽̇𝑖 = 𝜇𝑖

, (4)

with 𝛼𝑖, 𝛽𝑖, 𝜇𝑖 ∈ R, where 𝜇𝑖 is the control input of the 𝑖th agent. For
this system, the consensus protocol

𝜇𝑖 = −
∑

𝑘𝑖←𝑗
[

𝛾
(

𝛽𝑖 − 𝛽𝑗
)

+
(

𝛼𝑖 − 𝛼𝑗
)]

, (5)

𝑗∈𝑖
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where 𝛾 ∈ R+ is a coupling gain, was proposed, for example, in the
work by Ren and Atkins (2007). The goal of protocol (5) is to achieve
consensus, i.e., |𝛼𝑖 − 𝛼𝑗 | → 0 and |𝛽𝑖 − 𝛽𝑗 | → 0 as 𝑡 → ∞. Note
that (5) can be written in vector form as 𝝁 = −𝛾𝐋𝜷 − 𝐋𝜶, where
=
[

𝛼1 ⋯ 𝛼𝑛
]⊤ ∈ R𝑛, 𝜷 =

[

𝛽1 ⋯ 𝛽𝑛
]⊤ ∈ R𝑛, and 𝝁 =

[

𝜇1 ⋯ 𝜇𝑛
]⊤ ∈ R𝑛.

Thus, the feedback actuated system can be written as
[

𝜶̇
𝜷̇

]

= 𝐆(𝐋)
[

𝜶
𝜷

]

, (6)

with 𝐆 ∶ R𝑘×𝑘 → R2𝑘×2𝑘, where

𝐆(𝐊) ∶=
[

𝟎 𝐈𝑘
−𝐊 −𝛾𝐊

]

.

Ren and Atkins (2007) have shown that, unlike the single integrator
case, the existence of a spanning tree is not a sufficient condition
for reaching consensus. The same work then introduces a sufficient
condition in the form of a conservative bound on the coupling gain
𝛾 of protocol (5). Later, the work by Yu et al. (2010) provides an exact
bound on 𝛾 that guarantees that the agents reach consensus, which is
reproduced here for completeness.

Proposition 2 (Yu et al., 2010). The protocol (5) reaches consensus
asymptotically if and only if the digraph which describes the interaction
topology of the agents has a spanning tree and

𝛾2 > max
𝜂𝑖≠0

Im
(

𝜂𝑖
)2

Re
(

𝜂𝑖
)

(

Re
(

𝜂𝑖
)2 + Im

(

𝜂𝑖
)2
)

where 𝜂𝑖 represents the 𝑖th eigenvalue of 𝐋.

4.2. Triple integrator dynamics

Consider now that each agent is described by

⎧

⎪

⎨

⎪

⎩

𝜃̇𝑖 = 𝛼𝑖
𝛼̇𝑖 = 𝛽𝑖
𝛽̇𝑖 = 𝜇𝑖

, (7)

with 𝜃𝑖, 𝛼𝑖, 𝛽𝑖, 𝜇𝑖 ∈ R, where 𝜇𝑖 is the control input of the 𝑖th agent. For
this system, consider the consensus protocol

𝜇𝑖 = −
∑

𝑗∈𝑖

𝑘𝑖←𝑗
[

𝛾
(

𝛽𝑖−𝛽𝑗
)

+
(

𝛼𝑖−𝛼𝑗
)

+ 𝜁
(

𝜃𝑖−𝜃𝑗
)]

, (8)

where 𝛾 ∈ R≠0 and 𝜁 ∈ R≠0 are coupling gains. Note that no
assumptions are made on the sign of 𝛾 or 𝜁 , as convergence conditions
will be derived later on. In order to achieve consensus, the goal is to
have |𝜃𝑖 − 𝜃𝑗 | → 0, |𝛼𝑖 − 𝛼𝑗 | → 0, and |𝛽𝑖 − 𝛽𝑗 | → 0 as 𝑡 → ∞. Note that,
in vector form, (8) can be written as

𝝁 = −𝛾𝐋𝜷 − 𝐋𝜶 − 𝜁𝐋𝜽, (9)

with 𝜽 =
[

𝜃1 ⋯ 𝜃𝑛
]⊤ ∈ R𝑛, 𝜶 =

[

𝛼1 ⋯ 𝛼𝑛
]⊤ ∈ R𝑛, 𝜷 =

[

𝛽1 ⋯ 𝛽𝑛
]⊤ ∈ R𝑛,

and 𝝁 =
[

𝜇1 ⋯ 𝜇𝑛
]⊤ ∈ R𝑛. Therefore, for the third-order dynamics, the

feedback actuated system can be written as

𝐱̇ = 𝐇(𝐋)𝐱 (10)

with 𝐱 ∶=
[

𝜽⊤ 𝜶⊤ 𝜷⊤
]⊤ and 𝐇 ∶ R𝑘×𝑘 → R3𝑘×3𝑘, where

𝐇(𝐊) ∶=
⎡

⎢

⎢

⎣

𝟎 𝐈𝑘 𝟎
𝟎 𝟎 𝐈𝑘

−𝜁𝐊 −𝐊 −𝛾𝐊

⎤

⎥

⎥

⎦

,

or, in compact form,

𝜽⃛(𝑡) = −𝐋
(

𝛾𝜽̈(𝑡) + 𝜽̇(𝑡) + 𝜁𝜽(𝑡)
)

.

Remark 1. In the protocol (8), as well as in the protocol (5), there is
no coupling gain for 𝛼𝑖. This introduces no loss of generality, since the
effect of such a gain can be encapsulated in the digraph by scaling the
⎩

4

weights 𝑘𝑖←𝑗 and then adjusting 𝛾 and 𝜁 accordingly. More concretely,
consider that, in contrast with (9), one writes

𝝁 = −𝛾𝐋𝜷 − 𝜌𝐋𝜶 − 𝜁𝐋𝜽,

where 𝜌 ∈ R+ would be a coupling parameter for 𝛼𝑖. Defining 𝐋̃ ∶= 𝜌𝐋,
𝛾̃ ∶= 𝛾∕𝜌 and 𝜁 ∶= 𝜁∕𝜌, this becomes

𝝁 = −𝛾̃𝐋̃𝜷 − 𝐋̃𝜶 − 𝜁𝐋̃𝜽,

and the shape of (9) is recovered. Note that 𝐋̃ is associated with the
same digraph as 𝐋, with the weights 𝑘𝑖←𝑗 scaled by the factor 𝜌.

4.3. Convergence analysis

Now that the relevant consensus protocols have been introduced,
focus is turned to the analysis of the stability properties of the proposed
third-order consensus protocol (8) and its ability to achieve consensus.
To do so, some concepts are first introduced. Let 𝐉 be the real Jordan
form of 𝐋, such that 𝐋 = 𝐕𝐉𝐕−1. Note that 𝐋 has at least a null eigen-
value associated with the eigenvector 𝟏𝑛 and, according to Veerman
and Lyons (2020), the algebraic and geometric multiplicities of the null
eigenvalues are equal. Therefore, and without loss of generality, 𝐉 and
𝐕 can be written as

𝐉 =
[

0 𝟎
𝟎 𝐉∗

]

and 𝐕 =
[

𝐯1 ⋯ 𝐯𝑛
]

,

where 𝐉∗ ∈ R(𝑛−1)×(𝑛−1) and 𝐯𝑘 ∈ R𝑛, 𝑘 = 1,… , 𝑛, with 𝐯1 = 𝟏𝑛. Also,
let 𝐕−1 =

[

𝐰1 ⋯ 𝐰𝑛
]⊤, where 𝐰𝑘 ∈ R𝑛, 𝑘 = 1,… , 𝑛. Let 𝐰1 = 𝐫 and

note that, since 𝐕−1𝐕 = 𝐈𝑛, then 𝐫⊤𝟏𝑛 = 1, and 𝐰⊤𝑘 𝟏𝑛 = 0, 𝑘 = 2,… , 𝑛.
Furthermore, 𝐫 is known to be a non-negative vector (i.e., all its entries
are non-negative).

Proposition 3. Consider the map 𝐇 defined previously, with 𝛾, 𝜁 ∈ R.
The pair (𝜆, 𝐯) is an eigenpair of 𝐇(𝐊) if and only if 𝐯 =

[

𝐮⊤ 𝜆𝐮⊤ 𝜆2𝐮⊤
]⊤

and 𝜆 is a root of 𝜆3 + (𝛾𝜆2 + 𝜆+ 𝜁 )𝜂 = 0, where (𝜂,𝐮) is an eigenpair of 𝐊.

Proof. Considering 𝐯 =
[

𝐯⊤1 𝐯⊤2 𝐯⊤3
]⊤, it holds that

𝜆𝐯 = 𝐇(𝐊)𝐯 ⇔

⎧

⎪

⎨

⎪

⎩

𝜆𝐯1 = 𝐯2 (a)
𝜆𝐯2 = 𝐯3 (b)
𝜆𝐯3 = −𝜁𝐊𝐯1−𝐊𝐯2−𝛾𝐊𝐯3 (c)

. (11)

Applying the first equation to the second yields 𝐯3 = 𝜆2𝐯1. Applying
this, together with (11a), to (11c) yields

𝜆3𝐯1 = −
(

𝜁 + 𝜆 + 𝛾𝜆2
)

𝐊𝐯1.

It follows that 𝐯1 is an eigenvector of 𝐊. Choosing 𝐯1 = 𝐮 such that
𝐮 = 𝜂𝐮, one finally obtains 𝜆3 = −(𝜁 + 𝜆 + 𝛾𝜆2)𝜂, which concludes the
roof. □

Considering the result introduced in Proposition 3, the eigenvalues
f 𝐇(𝐋) can now be related with the eigenvalues of 𝐋. More concretely,

if 𝜂𝑖 ∈ C, 𝑖 = 1,… , 𝑛 are the eigenvalues of 𝐋, then the roots 𝜆𝑖𝑗 ,
𝑗 = 1, 2, 3, of ℎ𝑖(𝜆) = 0 with

ℎ𝑖(𝜆) ∶= 𝜆3 + (𝛾𝜆2 + 𝜆 + 𝜁 )𝜂𝑖,

are the three eigenvalues of 𝐇(𝐋) associated to 𝜂𝑖. It is straightforward
to conclude that 𝜂𝑖 = 0 implies that 𝜆𝑖1 = 𝜆𝑖2 = 𝜆𝑖3 = 0, i.e., for each
null eigenvalue in 𝐋 there are three null eigenvalues in 𝐇(𝐋). Moreover,
since by definition 𝜁 ≠ 0, it is possible to conclude that 𝜆 = 0 is a root
of ℎ𝑖(𝜆) only if 𝜂𝑖 = 0. Therefore 𝐇(𝐋) has exactly three null eigenvalues
or each null eigenvalue of 𝐋.

Consider the Lyapunov transformation described by

𝜽∗ = 𝐕−1𝜽 ∶=
[

𝜃∗1 ⋯ 𝜃∗𝑛
]⊤

𝜶∗ = 𝐕−1𝜶 ∶=
[

𝛼∗1 … 𝛼∗𝑛
]⊤

𝜷∗ = 𝐕−1𝜷 ∶=
[

𝛽∗1 ⋯ 𝛽∗𝑛
]⊤

. (12)
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Now, note that

𝜽 = 𝐕𝜽∗ = 𝜃∗1𝟏𝑛 + 𝜃
∗
2𝐯2 +⋯ + 𝜃∗𝑛𝐯𝑛. (13)

Furthermore, note that 𝐯𝑘, 𝑘 = 1,… , 𝑛, are linearly independent vectors
(𝐕 is invertible). To reach consensus one must have 𝜽 → 𝟏𝑛𝜃𝑐 (𝑡).

herefore, it is possible to conclude that 𝜃𝑐 (𝑡) = 𝜃∗1 (𝑡) and consensus is
eached if and only if 𝜽∗2,𝑛 → 𝟎, with 𝜽∗2,𝑛 ∶=

[

𝜃∗2 ⋯ 𝜃∗𝑛
]⊤. Bear in mind

hat 𝜃∗1 (𝑡) corresponds to the consensus value and 𝜽∗2,𝑛 can be regarded
s a transformed consensus error.

Conditions on the eigenvalues of 𝐇(𝐋) that allow for achieving
onsensus are now presented. A similar version of the result that
ollows was stated by Ren et al. (2007). Nonetheless, a proof is hereby
resented for the sake of completeness. It is worth noting that it is
traightforward to extend this result to any number of integrators.

emma 2. Consider the consensus protocol (8) for agents modeled by triple
ntegrator dynamics (7). Consensus is achieved if and only if the matrix
(𝐋) has exactly three null eigenvalues and the remaining eigenvalues have
egative real part. More concretely, when reaching consensus (for large 𝑡),

(𝑡) → 𝟏𝑛𝐫⊤
(

𝜽(0) + 𝜶(0)𝑡 + 𝜷(0) 𝑡
2

2

)

, (14)

here 𝐫 is the non-negative eigenvector of 𝐋⊤ associated to the null eigen-
alue, such that 𝟏⊤𝑛 𝐫 = 1.

roof. The third-order integrator dynamics (7) actuated by the con-
ensus protocol (8) are given by (10). Considering the previously
entioned Lyapunov transformation, the new system dynamics are

iven by

𝜽̇∗ = 𝜶∗

𝜶̇∗ = 𝜷∗

̇𝜷∗ = −𝐉𝜶∗ − 𝛾𝐉𝜷∗ − 𝜁𝐉𝜽∗
.

ow, consider the equivalent system description

⎧

⎪

⎨

⎪

⎩

𝜃∗1 = 0 (a)
𝜽⃛∗2,𝑛 = −𝐉∗

(

𝛾𝜽̈∗2,𝑛 + 𝜽̇∗2,𝑛 + 𝜁𝜽
∗
2,𝑛

)

(b)
. (15)

ecall that consensus is reached when 𝜽∗2,𝑛 → 𝟎. The solution of (15a)
ives

∗
1 (𝑡) = 𝜃∗1 (0) + 𝛼

∗
1 (0)𝑡 + 𝛽

∗
1 (0)

𝑡2

2!
.

There are three null eigenvalues associated with the subsystem (15a).
To have 𝜽∗2,𝑛 → 𝟎, then the remaining eigenvalues of 𝐇(𝐋) must have
negative real part. To show that (14) holds, note that when 𝜽∗2,𝑛 → 𝟎,
it follows that 𝜽 → 𝟏𝑛𝜃∗1 (𝑡), and noting that 𝜃∗1 = 𝐫⊤𝜽, 𝛼∗1 = 𝐫⊤𝜶, and
𝛽∗1 = 𝐫⊤𝜷,

𝜃∗1 (𝑡) = 𝐫⊤
(

𝜽(0) + 𝜶(0)𝑡 + 𝜷(0) 𝑡
2

2!

)

.

The consensus values for 𝜶 and 𝜷 can be obtained by taking the time
derivative. □

The result introduced in Lemma 2 provides conditions on the eigen-
values of 𝐇(𝐋) for which the agents achieve consensus. This result will
now be used to obtain bounds on the coupling gains 𝛾 and 𝜁 of the
protocol (8) that guarantee the agents converge to a consensus. More
specifically, exact bounds on the coupling gains are obtained, leading
to necessary and sufficient conditions for convergence.

Although not widely known, probably due to a lack of applications,
the extension of the Routh–Hurwitz criterion to polynomials with com-
plex coefficients has been around for several years now (Frank, 1946).
This extended criterion is explored here to determine conditions for
convergence of the third-order consensus protocol.
 s

5

Lemma 3 (Frank, 1946). A third degree polynomial with complex coeffi-
cients, of the form

𝑝(𝜆) = 𝜆3 + (𝑎2 + 𝑏2𝑗)𝜆2 + (𝑎1 + 𝑏1𝑗)𝜆 + (𝑎0 + 𝑏0𝑗),

with 𝑎𝑖, 𝑏𝑖 ∈ R, 𝑖 = 0, 1, 2, has all roots with negative real part if and only
f 𝑎2 > 0,

𝑎2 𝑎0 −𝑏1
1 𝑎1 −𝑏2
0 𝑏1 𝑎2

|

|

|

|

|

|

|

> 0, and

|

|

|

|

|

|

|

|

|

|

|

𝑎2 𝑎0 0 −𝑏1 0
1 𝑎1 0 −𝑏2 −𝑏0
0 𝑎2 𝑎0 0 −𝑏1
0 𝑏1 0 𝑎2 𝑎0
0 𝑏2 𝑏0 1 𝑎1

|

|

|

|

|

|

|

|

|

|

|

> 0.

The following result follows from Lemma 3 and will be essential in
proving the main result of the paper.

Lemma 4. A third-degree polynomial with complex coefficients, of the
form

𝑝3(𝜆) = 𝜆3 + 𝜂
(

𝛾𝜆2 + 𝜆 + 𝜁
)

,

where 𝛾, 𝜁 ∈ R and 𝜂 ∈ C, with Re(𝜂) > 0, has all its roots in the open left
half-plane if and only if

⎧

⎪

⎨

⎪

⎩

𝛾 >
√

1−𝜉2
𝜉𝜔𝑛

0 < 𝜁 <
[

𝜔𝑛
𝜉

(

𝛾 −
√

1−𝜉2
𝜉𝜔𝑛

)] ,

where 𝜔𝑛 = |𝜂| and 𝜉 = Re(𝜂) ∕𝜔𝑛.

roof. The proof is presented in the Appendix C. □

The following theorem is the main result of the paper.

heorem 1. The consensus protocol (8) for triple integrator agents
chieves consensus asymptotically if and only if the digraph which describes
he interaction topology of the agents has a spanning tree and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾 > max𝜂𝑖≠0

√

1−𝜉2𝑖
𝜉𝑖𝜔𝑛𝑖

(a)

0 < 𝜁 < min𝜂𝑖≠0

[

𝜔𝑛𝑖
𝜉𝑖

(

𝛾 −
√

1−𝜉2𝑖
𝜉𝑖𝜔𝑛𝑖

)]

(b)
, (16)

where 𝜔𝑛𝑖 = |𝜂𝑖| and 𝜉𝑖 = Re
(

𝜂𝑖
)

∕𝜔𝑛𝑖 represent the natural frequency and
amping coefficient, respectively, associated with the 𝑖th eigenvalue of 𝐋.

roof. From Lemma 2, the protocol (8) achieves consensus when 𝐇(𝐋)
as exactly three null eigenvalues and the remaining eigenvalues have
egative real part. But 𝐇(𝐋) has exactly three null eigenvalues if and
nly if 𝐋 has exactly one null eigenvalue. Thus, it follows from Lemma 1
hat there must exist a spanning tree in the associated digraph. Without
oss of generality, let 𝜂1 = 0 and 𝜂𝑖 ∈ C, 𝑖 = 2,… , 𝑛, be the eigenvalues
f 𝐋. Also from Lemma 1, it is known that Re

(

𝜂𝑖
)

> 0 for 𝑖 = 2,… , 𝑛.
herefore, the result presented in Lemma 4 can be applied to the
hird degree polynomial ℎ𝑖(𝜆) associated to an eigenvalue 𝜂𝑖 of 𝐋.
inally, noting that all the roots of ℎ𝑖(𝜆) associated with the non-null
igenvalues 𝜂𝑖 of 𝐋 must have negative real part, the conditions that
ust be met are (16) and the proof is concluded. □

emark 2. Note that it is straightforward to choose 𝛾 and 𝜁 that satisfy
he conditions (16) presented in Theorem 1. Since (16a) only concerns
, one can start by picking 𝛾 to satisfy that lower bound (that is always
ossible since the lower bound is a non-negative real number). Then
ne can choose 𝜁 that satisfies (16b), with 𝛾 fixed. If 𝛾 satisfies (16a),
hen the upper bound on 𝜁 is positive and the set of possible values for
, defined by (16b), is non-empty.

There are some particular cases of interest, in which all the eigen-
alues of 𝐋 are real. This is the case when, for example, the graph is
ndirected. When the interaction topology follows a leader–follower

tructure, all eigenvalues of 𝐋 are also real (Fax & Murray, 2004).
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Corollary 1. If the non-null eigenvalues of 𝐋 are real, then the third-order
consensus protocol (8) achieves consensus asymptotically if and only if the
digraph associated to the interaction topology has a spanning tree and
{

𝛾 > 0 (a)
0 < 𝜁 < min𝜂𝑖≠0

(

𝛾𝜂𝑖
)

(b)
(17)

where 𝜂𝑖, 𝑖 = 1,… , 𝑛 represents the 𝑖th eigenvalue of 𝐋.

Proof. When the non-null eigenvalues of 𝐋 are real, by definition,
𝜔𝑛𝑖 = |𝜂𝑖| = 𝜂𝑖 and 𝜉𝑖 = Re

(

𝜂𝑖
)

∕𝜔𝑛𝑖 = 𝜂𝑖
𝜂𝑖

= 1. Simple substitution in
he conditions presented in Theorem 1 yields the conditions for this
articular case. □

emark 3. Note that the result described in Proposition 2 regarding
he consensus protocol (5), and presented by Yu et al. (2010), can also
e obtained from Theorem 1 as a particular case. In fact, when 𝜁 is set
o zero, the consensus protocol (8) degenerates into the protocol (5)
cting on the third-order integrator dynamics (7) and 𝜽 becomes a pure
ntegrator. As a result, one has ℎ𝑖(𝜆) = 𝜆𝑔𝑖(𝜆), where 𝑔𝑖(𝜆) ∶= 𝜆2+𝛾𝜂𝑖𝜆+𝜂𝑖
lays the role of ℎ𝑖(𝜆) for the second-order dynamics described in
6). Note that, even though 𝜁 = 0 violates (16b), the requirement in
16a) does not depend on 𝜁 . Notably, 𝑔𝑖(𝜆) is Hurwitz if and only if
16a) is fulfilled. In fact, (16a) corresponds to the condition presented
n Proposition 2, i.e., dropping the second requirement in (16) from
heorem 1 yields the convergence conditions for the second-order
rotocol (5).

.4. Consensus in the presence of disturbances

The effect of disturbances is analyzed in this section. This analysis is
onducted for the case of agents modeled as triple integrators, however,
imilarly to Lemma 2, it is straightforward to extend the results to any
umber of integrators.

Consider now that each agent is described by

𝜃̇𝑖 = 𝛼𝑖
𝛼̇𝑖 = 𝛽𝑖
𝛽̇𝑖 = 𝜇𝑖 + 𝑑𝑖

, (18)

here 𝑑𝑖 ∈ R is a disturbance acting on the 𝑖th agent, or equivalently,
n vector form, that 𝜽⃛ = 𝝁 + 𝐝, where 𝐝 =

[

𝑑1 ⋯ 𝑑𝑛
]⊤ ∈ R𝑛 represents

he disturbances acting on the system. Consider again the Lyapunov
ransformation introduced in (12), and recall that 𝐕 =

[

𝐯1 ⋯ 𝐯𝑛
]

and
−1 =

[

𝐰1 ⋯ 𝐰𝑛
]⊤, with 𝐯1 = 𝟏𝑛 and 𝐰1 = 𝐫. Introduce 𝐖 ∶=

𝐰2 ⋯ 𝐰𝑛
]⊤ and 𝐐 ∶=

[

𝐯2 ⋯ 𝐯𝑛
]

, and note that the dynamics of 𝜽∗

or the feedback actuated system can now be written as

⎧

⎪

⎨

⎪

⎩

𝜃∗1 = 𝐫⊤𝐝 (a)
𝜽⃛∗2,𝑛 = −𝐉∗

(

𝛾𝜽̈∗2,𝑛 + 𝜽̇∗2,𝑛 + 𝜁𝜽
∗
2,𝑛

)

+𝐖𝐝 (b)
, (19)

ith 𝜽∗2,𝑛 = 𝐖𝜽 =
[

𝜃∗2 … 𝜃∗𝑛
]⊤. As previously mentioned, it follows

rom (13) that 𝜃∗1 corresponds to the consensus value and 𝜽∗2,𝑛 can be
egarded as a transformed consensus error, meaning that consensus is
eached if and only if 𝜽∗2,𝑛 → 𝟎. More concretely, it is possible to write
(𝑡) = 𝟏𝑛𝜃𝑐 (𝑡) + 𝜽̃(𝑡) where 𝜃𝑐 (𝑡) = 𝜃∗1 (𝑡) = 𝐫⊤𝜽(𝑡) is the consensus value
nd 𝜽̃(𝑡) = 𝐐𝜽∗2,𝑛(𝑡) is the consensus error. Furthermore, consider the
ecomposition 𝐝 = 𝑑𝟏𝑛 + 𝐝, where 𝐝 ∶=

(

𝐈𝑛 − 𝟏𝑛𝟏⊤𝑛 ∕𝑛
)

𝐝, and note that
𝐝 = 𝐖𝐝, because 𝐖𝟏𝑛 = 𝟎. Therefore, the dynamics (19b) can be
ritten as

̇̃ = 𝐇(𝐉∗)𝐱̃ + 𝐁̃𝐝, (20)

here 𝐁̃ ∶=
[

𝟎 𝟎 𝐖⊤]⊤ and 𝐱̃ =
(

𝐈3 ⊗𝐖
)

𝐱.
The following result describes a sufficient condition for consensus
n the presence of disturbances. a

6

roposition 4. The consensus protocol (8) for triple integrator agents
chieves consensus in the presence of the disturbances 𝐝 if the entries of 𝐝
re all equal and the conditions presented in Theorem 1 are fulfilled.

roof. Consensus is reached if and only if 𝜽∗2,𝑛 → 𝟎, which holds if and
nly if the origin of (19b) is asymptotically/ exponentially stable. The
atter is true if the conditions described in Theorem 1 hold and 𝐖𝐝 = 𝟎,
r equivalently, 𝐝 = 𝟎, meaning that 𝐝 = 𝑑𝟏𝑛. □

The following result holds when the disturbances are not all equal,
.e., when 𝐝 ≠ 𝟎, and shows that robust consensus can be achieved, in
he sense bounded disturbances lead to bounded consensus errors.

roposition 5. If 𝐝(𝑡) is bounded, i.e., ‖𝐝(𝑡)‖ ≤ 𝐷 for all 𝑡, and the
onditions from Theorem 1 hold, then the disturbances 𝐝 lead to a bounded
onsensus error and do not cause instability. Concretely, if ‖𝐝(𝑡)‖𝑝 ≤ 𝐷𝑝 for
ome 𝑙𝑝-norm, then a bound is given by ‖𝜽̃(𝑡)‖𝑝 ≤ 𝑧𝑝(𝑡), with

𝑝(𝑡) ∶= ‖𝐂̃𝑒𝐇(𝐉∗)𝑡𝐱̃(0)‖𝑝 +
(

∫

∞

0
‖𝐂̃𝑒𝐇(𝐉∗)𝑠𝐁̃‖𝑝 𝑑𝑠

)

𝐷𝑝,

here 𝐂̃ = [𝐐 𝟎 𝟎].

roof. When the conditions from Theorem 1 hold, the system de-
cribed by (20) is input-to-state stable with 𝐝 as input. Therefore, if
𝐝(𝑡)‖𝑝 ≤ 𝐷𝑝 for all 𝑡 ≥ 0, then the state 𝐱̃ is ultimately bounded and
he ultimate bound is a function of 𝐷𝑝. Consequently, the consensus
rror 𝜽̃ = 𝐐𝜽∗2,𝑛 = 𝐂̃𝐱̃ is also ultimately bounded. The proposed bound
ollows directly from the solution of (20). □

When the disturbances are constant, a more detailed analysis can
e conducted, yielding the following result.

roposition 6. The consensus protocol (8) for triple integrator agents
chieves consensus in the presence of constant disturbances 𝐝 if and only if
ll the entries of 𝐝 are equal and the conditions presented in Theorem 1 are
ulfilled. Moreover, when the entries of 𝐝 are not all equal, consensus is still
chieved for 𝜶 and 𝜷. More concretely, for large t,

(𝑡) → 𝟏𝑛𝐫⊤
(

𝜽(0) + 𝜶(0)𝑡 + 𝜷(0) 𝑡
2

2!
+ 𝐝 𝑡

3

3!

)

+ 𝜽̃∞, (21)

ith

̃∞ = 1
𝜁
𝐐
(

𝐉∗
)−1 𝐖𝐝

here 𝐫 is the non-negative left eigenvector of 𝐋 associated to the null
igenvalue, such that 𝟏⊤𝑛 𝐫 = 1.

roof. Considering constant disturbances, it is straightforward to solve
19a), yielding

∗
1 (𝑡) = 𝜃∗1 (0) + 𝛼

∗
1 (0)𝑡 + 𝛽

∗
1 (0)

𝑡2

2!
+ 𝐫⊤𝐝 𝑡

3

3!
.

Note that if 𝐝 is constant, (19b) can be rewritten as an error system
with 𝜽̃∗2,𝑛 = 𝜽∗2,𝑛 − (𝜁𝐉∗)−1𝐖𝐝 and its first and second time derivatives
s state variables. It follows immediately that the origin of this new
rror system is exponentially stable, meaning that 𝜽∗2,𝑛 → (𝜁𝐉∗)−1 𝐖𝐝. It
s now possible to transform the solution back to the original system
ariables. Recalling that 𝜃∗1 = 𝐫⊤𝜽, 𝛼∗1 = 𝐫⊤𝜶, and 𝛽∗1 = 𝐫⊤𝜷, one
inally obtains that for large 𝑡, (21) holds. To conclude that consensus
s achieved for state variables 𝜶 and 𝜷, simply note that 𝜶 = 𝜽̇, 𝜷 = 𝜽̈
nd ̇̃𝜽∞ = 𝟎. □

.5. Illustrative examples

Some examples are now presented considering three different inter-
ction topologies, as described by the digraphs presented in Fig. 2. First,
he convergence to consensus without the presence of disturbances is
ddressed, in order to illustrate the convergence criteria described in
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Fig. 2. Digraphs associated with the interaction topologies that are addressed in the
examples.

Theorem 1, and then an example considering disturbances is given, to
validate the results presented in Section 4.4.

Unless otherwise stated, in the remainder of this section it is consid-
ered that 𝑘𝑖←𝑗 = 1 and 𝛾 = 1, and that 𝜃𝑖(0) = 10(𝑖−1), 𝛼𝑖(0) = −0.5(𝑖−1),
and 𝛽𝑖(0) = 0.05𝑖.

4.5.1. Leader-follower topology
When an agent has only outgoing interaction links, without any

incoming ones, that agent is called leader and the others are called
followers. Without loss of generality, one can label the leader as agent
1. An example of a leader-follower topology is given by the digraph
illustrated in Fig. 2(a). The matrix 𝐋 associated to that digraph is then

𝐋 =
⎡

⎢

⎢

⎣

0 0 0
−1 1 0
0 −1 1

⎤

⎥

⎥

⎦

.

If it is noted that matrix 𝐋 can be transformed into a triangular matrix
by a relabeling of the digraph vertices (Ren & Atkins, 2007), it can
be concluded that all the eigenvalues of 𝐋 are real. In this case, the
stability bounds are given in Corollary 1. It is worth noting that the
input of the leader agent is null, i.e., 𝜇1 = 0 (its neighborhood is the
empty set). Then, according to the agent dynamics (7), it is concluded
that 𝜃1(𝑡) = 𝜃1(0) + 𝛼1(0)𝑡 + 𝛽1(0)

𝑡2

2 . Therefore, when consensus is
chieved, all agents must converge to these values, i.e.,

(𝑡) → 𝟏𝑛
(

𝜃1(0) + 𝛼1(0)𝑡 + 𝛽1(0)
𝑡2

2

)

,

s it can be observed in Fig. 3(a). Then, by comparison with the
onsensus values presented in Lemma 2, it is possible to draw the
onclusion that for a leader-follower topology where the leader is agent
, 𝐫 = 𝐞1.

The evolution of the state of the agents with time, for the interaction
opology described by the digraph of Fig. 2(a), is presented in Fig. 3 for
= 0.5, 𝜁 = 1, and 𝜁 = 1.5. Recall that 𝛾 = 1 and note that non-null

igenvalues of 𝐋 are 𝜂2 = 𝜂3 = 1. Then, in order to reach consensus,
ccording to Corollary 1, 𝜁 must be smaller than one. Clearly, when
= 0.5 the bound on 𝜁 is verified and the agents reach consensus,

nd when 𝜁 = 1.5 the bound on 𝜁 is not verified and the system
ecomes unstable. For the critical condition of 𝜁 = 1, one would expect
hat the system became marginally stable. However, Fig. 3(b) suggests
hat the system is unstable. In fact, this exact condition leads to two
airs of coincident poles in the imaginary axis, which is in accordance
ith the evolution presented in Fig. 3(b), that shows linearly growing
scillations.

.5.2. Undirected topology
The case of an undirected interaction topology, as the one described

y the digraph of Fig. 2(b), is now addressed. In this case, 𝐋 is a
symmetric matrix and therefore all its eigenvalues are real. In this
example,

𝐋 =
⎡

⎢

⎢

⎣

2 −1 −1
−1 1 0
−1 0 1

⎤

⎥

⎥

⎦

.

As in the previous example, it is possible to determine the vector 𝐫,
which is in this case 𝐫 = 1𝟏 . To draw that conclusion, recall the
𝑛 𝑛

7

definition of 𝐫 and note that is equivalent to saying that 𝐫 is the
ight eigenvector of 𝐋⊤ associated with the null eigenvalue, such that
⊤
𝑛 𝐫 = 1. The result follows by noting that, in this case, it holds that
⊤ = 𝐋 ⟹ 𝐋⊤𝟏𝑛 = 𝟎. It follows from Lemma 2 that for 𝐫 = 1

𝑛 𝟏𝑛
the consensus value will be determined by the average of the initial
conditions.

The evolution of the agents for the undirected topology is presented
in Fig. 4, again for 𝜁 = 0.5, 𝜁 = 1, and 𝜁 = 1.5. The non-null eigenvalues
f 𝐋 are now 𝜂2 = 1 and 𝜂3 = 3. Then, the conditions for reaching
onsensus are 𝛾 > 0 and 𝜁 < 𝛾. Considering again 𝛾 = 1 one obtains
< 1, as in the previous example. Fig. 4(a) presents the case when
= 0.5 (in which the bound on 𝜁 is verified) and it is clear that

he group of agents reaches a consensus. The case when 𝜁 = 1.5 (the
ound on 𝜁 is not verified) is presented in Fig. 4(c) and, clearly, the
ystem becomes unstable and the agents do not reach consensus. For
he critical condition of 𝜁 = 1, the system becomes marginally stable,
s evidenced by the undamped oscillations present in the evolution that
an be seen in Fig. 4(b).

.5.3. Cycle topology
Finally, the case of a cyclic interaction topology, as the one de-

cribed by the digraph of Fig. 2(c), is addressed. This is perhaps the
ost interesting of the three cases. In this example, the Laplacian
atrix is given by

=
⎡

⎢

⎢

⎣

1 0 −1
−1 1 0
0 −1 1

⎤

⎥

⎥

⎦

.

otably, the eigenvalues of 𝐋 contain an imaginary part. Fax and
urray (2004) show that for a cyclic topology, the eigenvalues of 𝐋

re given by

𝑖 = 1 − exp
(

𝑗
2𝜋(𝑖 − 1)

𝑛

)

for 𝑖 = 1,… , 𝑛. This means that, besides the null eigenvalue, given by
𝑖 = 1, the remainder eigenvalues will be 𝜂± = 3∕2 ± 𝑗

√

3∕2. It follows
from Theorem 1 that in order for consensus to be achieved, it must be
𝛾 >

√

6∕6. Considering that 𝛾 = 1, as in the previous cases, the condition
𝜁 < 𝜁𝑐 , with 𝜁𝑐 ∶=

(

6 −
√

6
)

∕3 is now obtained.
For a cyclic digraph as the one presented in Fig. 2(c), with equal

connection weights (in this case, 𝑘𝑖←𝑗 = 1), it holds that 𝐫 = 1
𝑛 𝟏𝑛, as in

the case of the undirected topology. To conclude this, note that
𝑛
∑

𝑖=1
𝜇𝑖 = 0 ⟹

1
𝑛

𝑛
∑

𝑖=1
𝛽̇𝑖 = 0 ⟹ 𝛽(𝑡) = 𝛽(0).

But from Lemma 2, 𝜷(𝑡) → 𝟏𝑛𝐫⊤𝜷(0). Therefore, one concludes that
= 1

𝑛 𝟏𝑛.
In Fig. 5, the time evolution of the agents is presented for 𝜁 = 0.5,

𝜁 = 𝜁𝑐 , and 𝜁 = 1.5. When 𝜁 = 0.5, the bounds on 𝜁 and 𝛾 are
fulfilled and therefore the agents reach consensus, as can be observed
in Fig. 5(a). For 𝜁 = 1.5, the bound on 𝜁 is not verified and the agents
diverge, as can be seen in Fig. 5(c). Regarding the critical condition,
𝜁 = 𝜁𝑐 , the system becomes marginally stable, leading to the undamped
oscillations that can be observed in Fig. 5(b) and the agents do not
reach consensus.

4.5.4. Cycle topology in the presence of disturbances
Some examples are now presented considering the interaction topol-

ogy of the digraph in Fig. 2(c), with 𝛾 = 1.2 and 𝜁 = 0.4, to
illustrate the effect of disturbances and validate the results introduced
in Propositions 5 and 6.

The evolution of the states of the agents for these examples is
presented in Fig. 6. Fig. 6(a) presents the evolution in the absence of
disturbances. Figs. 6(b)–6(d) present the response for different constant
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Fig. 3. Evolution of the states of the agents for interaction topology presented in Fig. 2(a).

Fig. 4. Evolution of the states of the agents for interaction topology presented in Fig. 2(b).

Fig. 5. Evolution of the states of the agents for interaction topology presented in Fig. 2(c).

Fig. 6. Evolution of the states of the agents in the presence of different disturbances, considering the topology from Fig. 2(c).

8
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disturbances, and the dashed lines in these figures represent where the
agents converge to, i.e., according to Proposition 6,

𝜽(𝑡) → 𝟏𝑛𝐫⊤
(

𝜽(0) + 𝜶(0)𝑡 + 𝜷(0) 𝑡
2

2!
+ 𝐝 𝑡

3

3!

)

+ 𝜽̃∞.

Recall that in this case 𝐫 = 1
𝑛 𝟏𝑛, to conclude that 𝐫⊤𝐝 is equal to the

average of the entries of 𝐝.
In Fig. 6(b), the disturbance 𝐝 was chosen such that 𝐫⊤𝐝 = 0 and

̃∞ ≠ 𝟎. With 𝐝 = 𝐝𝑏 = [1 −2 1]⊤, it follows that 𝜽̃∞ = 𝜽̃𝑏 =
[2 −2 0]⊤. Since 𝐫⊤𝐝 = 0, then

𝜽(𝑡) → 𝟏𝑛
(

𝜃̄(0) + 𝛼̄(0)𝑡 + 𝛽(0) 𝑡
2

2!

)

+ 𝜽̃𝑏.

In Fig. 6(c), 𝐝 was chosen such that 𝜽̃∞ = 𝟎 and 𝐫⊤𝐝 ≠ 0, i.e., all the
entries of 𝐝 are equal and non-null (𝐝 = 𝐝𝑐 = 𝑑𝟏𝑛 with 𝑑 = −0.015). In
this case,

𝜽(𝑡) → 𝟏𝑛
(

𝜃̄(0) + 𝛼̄(0)𝑡 + 𝛽(0) 𝑡
2

2!
+ 𝑑 𝑡

3

3!

)

,

and the agents reach consensus. In Fig. 6(d), 𝐝 = 𝐝𝑏 + 𝐝𝑐 is considered,
hence both effects are present. Therefore,

𝜽(𝑡) → 𝟏𝑛
(

𝜃̄(0) + 𝛼̄(0)𝑡 + 𝛽(0) 𝑡
2

2!
+ 𝑑 𝑡

3

3!

)

+ 𝜽̃𝑏.

Finally, a bounded disturbance is considered in Fig. 6(e), to illus-
rate the result introduced in Proposition 5. Particularly, the distur-
ance 𝐝 was chosen to be 𝐝 = 𝐝𝑒(𝑡) = 𝐮𝑓 (𝑡), where 𝐮 = [1 0 −1]⊤

and 𝑓 (𝑡) = cos
(

7
5 𝑡 + 2

)

+ cos
(

3
4 𝑡
)

. The dashed lines in Fig. 6(e)
epresent a bound on the states of the agents, built using the bound
rovided in Proposition 5. Concretely, recall that 𝜽(𝑡) = 𝟏𝑛𝜃𝑐 (𝑡) + 𝜽̃(𝑡)
or component-wise, 𝜃𝑖(𝑡) = 𝜃𝑐 (𝑡) + 𝜃𝑖(𝑡)) to write that

𝜃𝑖(𝑡) − 𝜃𝑐 (𝑡)| = |𝜃𝑖(𝑡)| ≤ ‖𝜽̃(𝑡)‖∞ ≤ 𝑧∞(𝑡),

here the bound provided in Proposition 5 is used with 𝑝 = ∞. This
eads to

𝑐 (𝑡) − 𝑧∞(𝑡) ≤ 𝜃𝑖(𝑡) ≤ 𝜃𝑐 (𝑡) + 𝑧∞(𝑡),

hich are the bounds presented in Fig. 6(e). Moreover, note that for
= 𝐝𝑒(𝑡) it holds that 𝐝 = 𝐝. Therefore, since |𝑓 (𝑡)| ≤ 𝐹 for all 𝑡, for

some 𝐹 ∈ R+, then ‖𝐝(𝑡)‖∞ ≤ 𝐹 for all 𝑡.

5. Formation control

This section tackles the problem of designing a formation tracking
controller for double-integrator modeled vehicles, enhanced with the
ability to reject constant disturbances. To that end, the third-order
consensus protocol (8) is used to augment a formation control law used
for double-integrator vehicles with integral action, yielding a PID-like
controller.

5.1. Formation tracking controller

Consider the system of 𝑛 vehicles with the dynamics described in
(1), ignoring for the moment the effect of the disturbance 𝐝𝑖. Let 𝐩̃𝑖 ∶=
𝐩𝑖 − 𝐩𝐝𝑖 be the trajectory tracking error. Then
{

𝐩̇𝑖 = 𝐯𝑖
𝐯̇𝑖 = 𝐮𝑖

⟹

{

̇̃𝐩𝑖 = 𝐩̇𝑖 − 𝐩̇𝐝𝑖 ∶= 𝐯̃𝑖
̇̃𝐯𝑖 = 𝐯̇𝑖 − 𝐩̈𝐝𝑖 ∶= 𝐮̃𝑖

. (22)

Recall that, in order to track a prescribed formation, the goal is to
have 𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗 → 𝟎, where 𝐩𝑖𝑗 and 𝐩𝐝𝑖𝑗 denote the relative position,
and the desired relative position of vehicle 𝑖 with respect to vehicle
𝑗, respectively. However, note that 𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗 = 𝐩̃𝑖 − 𝐩̃𝑗 , meaning that,
the goal is equivalent to 𝐩̃𝑖 − 𝐩̃𝑗 → 𝟎. The dynamics described in (22)
are decoupled, and so, the controllers can be designed independently
for each axis. Comparing the dynamics over each axis with the ones

described in (4), it is possible to conclude they are the same. Also, note

9

that the control objective is the same as the one described for protocol
(5). Therefore, the consensus protocol (5) can be used to achieve
formation tracking, and the control input 𝐮̃𝑖 for the error dynamics
becomes

𝐮̃𝑖 = −
∑

𝑗∈𝑖

𝑘𝑖←𝑗
[(

𝐩̃𝑖 − 𝐩̃𝑗
)

+ 𝛾
(

𝐯̃𝑖 − 𝐯̃𝑗
)]

,

which is guaranteed to drive the vehicles into formation, under the
conditions of Proposition 2. The control input for the 𝑖th vehicle can
then be recovered, yielding

𝐮𝑖 = 𝐩̈𝐝𝑖 −
∑

𝑗∈𝑖

𝑘𝑖←𝑗
[(

𝐩𝑖𝑗−𝐩𝐝𝑖𝑗
)

+𝛾
(

𝐯𝑖𝑗−𝐩̇𝐝𝑖𝑗
)]

. (23)

The same rationale could be used to define a controller for vehicles
modeled as triple integrators using the consensus protocol (8).

5.1.1. Inclusion of integral action
When performing formation tracking, using the control law de-

scribed in (23), the distributed multi-vehicle system is able to track
the prescribed formation, under the conditions of Proposition 2. How-
ever, real systems are susceptible to a number of non-idealities, such
as disturbances, modeling errors and actuator dead-zones, which can
deteriorate the ability to achieve their goal.

Recover now the disturbances 𝐝𝑖 in the system of 𝑛 vehicles with the
dynamics described in (1), which were previously ignored. To mitigate
the effects of these disturbances, integral action is proposed. This can
be achieved considering the integral of the position tracking error,
modeled by an extra state 𝐠̃𝑖, described by ̇̃𝐠𝑖 = 𝐩̃𝑖. The error system
described in (22), considering this new state and the disturbances that
were previously ignored becomes

⎧

⎪

⎨

⎪

⎩

̇̃𝐠𝑖 = 𝐩̃𝑖
̇̃𝐩𝑖 = 𝐯̃𝑖
̇̃𝐯𝑖 = 𝐮̃𝑖 + 𝐝𝑖

.

This is now a triple integrator system with a constant disturbance,
analogous to the one in (18). It is then straightforward to conclude that
the consensus protocol (8) can be used to derive the control law

𝐮̃𝑖 = −
∑

𝑗∈𝑖

𝑘𝑖←𝑗
[(

𝐩̃𝑖 − 𝐩̃𝑗
)

+ 𝛾
(

𝐯̃𝑖 − 𝐯̃𝑗
)

+ 𝜁
(

𝐠̃𝑖 − 𝐠̃𝑗
)]

for the error dynamics, that is able to track the formation in the
presence of constant disturbances, as stated in Proposition 6, when the
conditions of Theorem 1 hold. Finally, noting that

𝐠̃𝑖 − 𝐠̃𝑗 = ∫

𝑡

𝑡0

(

𝐩̃𝑖 − 𝐩̃𝑗
)

𝑑𝑡 = ∫

𝑡

𝑡0

(

𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗
)

𝑑𝑡,

the control input for the 𝑖th vehicle is recovered, yielding

𝐮𝑖 = 𝐩̈𝐝𝑖 −
∑

𝑗∈𝑖

𝑘𝑖←𝑗

[

(

𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗
)

+ 𝛾
(

𝐯𝑖𝑗 − 𝐩̇𝐝𝑖𝑗
)

+ 𝜁 ∫

𝑡

𝑡0

(

𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗
)

𝑑𝑡
]

.

(24)

5.1.2. Inclusion of goal seeking terms
Having designed a controller that achieves formation tracking, it is

important to modify this controller in a way that all vehicles are driven
to their desired positions, i.e., that 𝐩𝑖 → 𝐩𝐝𝑖 . Note that the formation is
prescribed by the position of each vehicle with respect to the others,
meaning that vehicles can achieve formation tracking without reaching
their desired positions. As an example, in a limit case, aerial vehicles
could be in formation while at free-fall, because the relative positions
remain the same.

To drive the vehicles to their desired positions, the previously
derived control law must be modified by adding what are called goal
seeking terms. These terms consist of trajectory tracking controllers that

‘‘attract’’ the vehicles to their desired positions. Note that, to implement



P. Trindade, P. Batista and R. Cunha Control Engineering Practice 133 (2023) 105436

c
s
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such controllers, the vehicles must have knowledge of their own state,
and not only their state with respect to their neighbors. In a way, the
goal seeking term represents the knowledge a vehicle has of its own
state. In terms of the digraph, this knowledge can be represented by
a self-loop, that models the information flow from a vehicle to itself,
i.e., the vehicle sees/senses itself. In contrast with the work by Ren and
Atkins (2007), this work considers adding goal seeking terms only to a
limited set of vehicles 𝑆 . These vehicles track their desired trajectory,
and the others adjust their trajectories by tracking the formation. As
such, not all vehicles need to have knowledge of their own state.

In short, one seeks to add a PID trajectory tracking controller, of the
form

𝐮̃𝐺𝑖 = −𝑘𝑖←𝑖

(

𝐩̃𝑖 + 𝛾 𝐯̃𝑖 + 𝜁 ∫ 𝐩̃𝑖 𝑑𝑡
)

,

to the previously derived control law, seeking to ensure that 𝐩̃𝑖 → 𝟎 as
𝑡 → ∞. Analogously, one can analyze adding the term

𝜇𝐺𝑖 = −𝑘𝑖←𝑖
[

𝛼𝑖 + 𝛾𝛽𝑖 + 𝜁𝜃𝑖
]

,

to 𝜇𝑖 in the consensus protocol (8) to drive the system (7) to the origin.
Note that now, the control for system (7) can be written in vector form
as 𝝁 = −𝜶 − 𝛾𝜷 − 𝜁𝜽, and the feedback actuated system becomes
𝐱̇ = 𝐇()𝐱, where  is the generalized Laplacian of the digraph. The
goal seeking terms seek to ensure that the feedback actuated system,
now described by 𝐱̇ = 𝐇()𝐱, is stable, i.e., that 𝐇() is a stable matrix.

Theorem 2. Suppose that the communication digraph has a spanning tree.
Then, the vehicles reach their desired positions if and only if there is at least
a vehicle with a goal seeking term that has a directed path to all others,
and the coupling gains 𝛾 and 𝜁 satisfy the conditions for consensus (16a)
and (16b) of Theorem 1, substituting the Laplacian 𝐋 by the generalized
Laplacian .

Proof. The vehicles reach their desired positions when the matrix 𝐇()
is Hurwitz. Recall Proposition 3 to relate the eigenvalues of 𝐇() with
the eigenvalues of . Let 𝜂𝑖 ∈ C, 𝑖 = 1,… , 𝑛 be the eigenvalues of  and
𝜆𝑖𝑗 , 𝑗 = 1, 2, 3 be the eigenvalues of 𝐇() associated with 𝜂𝑖, i.e., the
roots ℎ𝑖(𝜆) = 0, with ℎ𝑖(𝜆) = 𝜆3 + 𝜂𝑖

(

𝛾𝜆2 + 𝜆 + 𝜁
)

. Since for each null
eigenvalue in , there are three null eigenvalues in 𝐇(), then for 𝐇()
to be Hurwitz there can be no null eigenvalue in . Considering that,
by hypothesis, the communication digraph contains a spanning tree,
then by Proposition 1 there are no null eigenvalues in  if and only if
a vehicle that has a directed path to all others has a goal seeking term.
Moreover, in that case, all eigenvalues of  have positive real part.
Therefore, the result presented in Lemma 4 can be applied to the third
degree polynomial ℎ𝑖(𝜆) associated to an eigenvalue 𝜂𝑖 of . Finally,
noting that all the roots of ℎ𝑖(𝜆) associated with the eigenvalues 𝜂𝑖 of 
must have negative real part, the conditions that must be met are (16)
and the proof is concluded. □

Remark 4. The results presented in Theorems 1 and 2 depend on
the eigenvalues of the Laplacian 𝐋 and generalized Laplacian , re-
spectively, which may raise scalability issues. The complexity on the
computation of these eigenvalues is 𝑂(𝑛3). Therefore, for large 𝑛, the
computation of these eigenvalues might be computationally expensive.
Nonetheless, this result targets the design of the protocol parameters 𝛾
and 𝜁 , which can be done offline.

5.2. Illustrative example

Before applying the results presented in this section in an exper-
imental setting, an illustrative example is presented. The interaction
topology considered in this example is presented in Fig. 7, where the
digraph is represented as a tree of strongly connected components,
that will be referred to as supernodes. The depth 𝑀 of the graph, as

illustrated in Fig. 7(a), can be changed to scale the number of vehicles,

10
Fig. 7. Description of the graph that models the interaction topology. Each node on
the graph of Fig. 7(a) is a supernode, as the one presented in Fig. 7(b).

which is given by 𝑛 = 7
(

2𝑀+1 − 1
)

. For this example, 𝑀 = 3 is
onsidered, which leads to 𝑛 = 105. Note that this graph contains a
panning tree, which is a necessary condition for consensus.

The only nodes that have a directed path to all others are the nodes
n supernode 1 of Fig. 7(a) (the root supernode). It follows from Theo-

rem 2 that at least one of those vehicle must have a goal-seeking term
so that all vehicles reach their desired positions. Therefore, consider
adding self-loops to nodes 𝐴 and 𝐵 of supernode 1. Finally, all the arc
weights are set to 𝑘𝑖←𝑗 = 1.5 and the coupling gains used are 𝛾 = 2.5 and
𝜁 = 0.11, which were chosen to verify the conditions from Theorem 2.

In this example, the vehicles are 2D double integrators equipped
with the control law (24). Their goal is to move in the plane along the
𝑥-axis at a constant speed 𝑣𝑥 = 1m∕s, with a circle shaped formation.
The initial positions of the vehicles are assigned to be the initial desired
positions plus some error, drawn from a Gaussian distribution with
expectation 𝝁 = [0 1]⊤ and covariance Σ = 𝐈2. The vehicles 𝐺 and
𝐶, from the supernodes 2 and 4, are subject to constant disturbances
𝐝𝑖 = [0 − 3]⊤.

The results of this example are presented in Fig. 8. The movement
of the vehicles in the plane is presented in Fig. 8(a). There, it can be
observed the convergence of the vehicles to the circle shaped formation,
that moves at a constant speed of 1m∕s along the 𝑥-axis. Fig. 8(b)
presents a positive definite function of the position error given by

𝑉 (𝑡) ∶=
𝑛
∑

𝑖=1

⎡

⎢

⎢

⎣

𝑘2𝑖←𝑖‖𝐩𝑖 − 𝐩𝐝𝑖 ‖
2 +

∑

𝑗∈𝑖

𝑘2𝑖←𝑗‖𝐩𝑖𝑗 − 𝐩𝐝𝑖𝑗‖
2
⎤

⎥

⎥

⎦

,

which goes to zero, meaning that the vehicles are able to track their
desired positions in the presence of the constant disturbances.

6. Experimental validation

In this section, experimental results are presented to validate the
proposed solutions. To that end, the presented algorithms were applied
to multirotor vehicles. Nevertheless, these can be applied to any ve-
hicles modeled as double integrators. In a first part, the application
of these algorithms to multirotors is detailed. Then, the considered
experimental setup is described, and finally the experimental results
are presented.

6.1. Multirotor tracking control

Multirotor vehicles are characterized by having multiple rotors, all
generating thrust aligned with the vertical direction of the vehicle. The
multirotor dynamics can be modeled with different levels of complex-
ity. An inner-outer loop control scheme is typically used to control
the attitude (inner-loop) with actuation on the body torques, and the
position of the multirotor (outer-loop) with actuation on the total thrust

and virtual control inputs defined by the attitude. Under appropriate
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Fig. 8. Results of the example, displayed up to time 𝑡 = 45s.

Fig. 9. Forces applied to the multirotor.

ssumptions, it is adequate to use a 3-D double integrator to model the
ultirotor translational motion. More specifically, this model can be

dopted if the attitude is controlled by an inner-loop attitude controller
hat is sufficiently fast, when compared to the outer-loop linear motion
ynamics. This is a common approach which is used, for example,
y Falanga et al. (2019).

To define the outer-loop position controller and ultimately apply
he controller defined in Section 5, consider Newton’s second law of
otion, which states that ∑

𝑖 𝐟𝑖 = 𝐪̇, where 𝐟𝑖 ∈ R3 represents the 𝑖th
orce applied to the multirotor, 𝑚 ∈ R+ its mass, 𝐯 ∈ R3 its velocity,
nd 𝐪 = 𝑚𝐯 the linear momentum of the vehicle. Since the mass is
onstant, and considering the forces presented in Fig. 9,

̇ = 1
𝑚

∑

𝑖
𝐟𝑖 =

𝑇
𝑚
𝐑𝐞3 − 𝑔𝐞3,

where 𝑔 is the acceleration of gravity, 𝐑 represents the rotation matrix
from the body to the inertial frame and 𝑇 represents the norm of the
total thrust applied by the rotors. Note that, 𝐯̇ = 𝐮 is the control input
of the double integrator system previously discussed. The goal is then
to determine 𝑇 , and the attitude associated with 𝐑, that correspond to
the control input 𝐮.

Note that the matrix 𝐑 can be decomposed into three rotation
matrices, associated to a sequence of elementary rotations around
the principal rotation axis. These rotations refer to the Euler angle
representation of the orientation. Different rotation sequences can be
used to represent an arbitrary rotation matrix 𝐑. In this work, the
𝑍𝑌𝑋 Euler angle representation is adopted, for which 𝐑 takes the form
𝐑 = 𝐑 (𝜓)𝐑 (𝜃)𝐑 (𝜙). For a rotation matrix, it holds that 𝐑−1 = 𝐑⊤.
𝑧 𝑦 𝑥

11
It follows that if (𝑇 , 𝜙, 𝜃) are chosen such that 𝐑𝑦(𝜃)𝐑𝑥(𝜙)𝑇 𝐞3 = 𝐮∗,
where 𝐮∗ ∶= 𝑚𝐑𝑧(𝜓)⊤

(

𝐮 + 𝑔𝐞3
)

, the double integrator model can be
recovered. The angles 𝜙 and 𝜃, as well as 𝑇 , associated to 𝐮, must then
be determined. To do so, it is necessary to know 𝜓 , commonly denoted
by yaw angle. Note that the yaw angle varies with time, and can be
controlled by providing the inner-loop attitude controller with a desired
yaw angle, which was chosen to be constant. To determine 𝜙, 𝜃 and 𝑇 ,
given 𝐮, 𝜓 , and the transformed control input 𝐮∗ =

[

𝑢∗1 𝑢
∗
2 𝑢

∗
3
]⊤, it can

be written that
𝑢∗1
𝑢∗3

= tan(𝜃), and
𝑢∗2

√

𝑢∗1
2 + 𝑢∗3

2
= − tan(𝜙).

t is then straightforward to determine 𝜙 and 𝜃, provided that either
∗
1 ≠ 0 or 𝑢∗3 ≠ 0. To determine the total thrust, 𝑇 , note that 𝑇 = ‖𝐮∗‖.

6.2. Experimental setup

In order to validate the proposed approach, experiments were con-
ducted with multirotor vehicles in an indoor environment, using a
motion capture system to acquire position data, which was then sent
to the multirotors using WiFi. The Intel Aero Ready To Fly quadrotor
was used, equipped with the PX4 autopilot. The capabilities of the
autopilot were used for sensor fusion between the onboard sensors
and the motion capture position and attitude data, and for interaction
with the multirotor platform. The controllers were implemented in a
single computer, which receives data from the multirotors and sends
commands through WiFi. Due to space constraints, the experiments
were conducted using two multirotors, while other multirotors were
simulated in-the-loop, using the Gazebo simulator. The Robot Operat-
ing System (ROS) (more concretely, the MavROS package) was used as
middleware for communication with the autopilot.

The flight procedure considers the takeoff for all vehicles simul-
taneously, using the capabilities of the PX4 autopilot, and only after
all the multirotors are flying, a transition is made into the controller
to test. When the experiment ends, all vehicles are given a command
to land. The commands to switch between flight phases are manually
inserted by the operator during the flight, and sent to all vehicles
simultaneously.

6.3. Results

Experiments were performed to test the proposed control algo-
rithms, and a video of these experiments is presented in https://youtu.
be/99CGAzf4xDM. The goal is to compare the performance of the
proposed control solution, that contemplates integral action with the
baseline controller, without integral action. When presenting results,
circles and squares are used to represent the current and initial posi-
tions of the vehicles, respectively. In the figures showing the altitude
evolution, the shaded areas represent the takeoff and landing parts of
the flight. In the middle area, the formation controller is active.

For these experiments, a leader vehicle is considered. This is a
vehicle that only has outgoing links in the digraph that describes the
interaction topology, and if there is a spanning tree in the digraph,
this is also the only vehicle that has a directed path to all others. The
trajectory tracking controller for the leader vehicle can be designed
independently of the formation tracking controller. If the trajectory
tracking controller for the leader is stable, and the formation tracking
controller leads the vehicles into formation, then all vehicles are able
to achieve their desired position. Without loss of generality, let the
leader be vehicle 1. Since the controller for this vehicle can be designed
independently, let this be given by

𝐮1 = 𝐩̈𝐝1 −𝐾𝑃 𝐩̃1 −𝐾𝑉 𝐯̃1 −𝐾𝐼 ∫
𝑡

𝑡0
𝐩̃1 𝑑𝑡, (25)

hich is a PID controller where 𝐾𝑃 , 𝐾𝐼 , 𝐾𝑉 ∈ R+ are the proportional,
ntegral, and derivative gains, respectively. Note that the control law

https://youtu.be/99CGAzf4xDM
https://youtu.be/99CGAzf4xDM
https://youtu.be/99CGAzf4xDM
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Fig. 10. Interaction topology considered.

or the leader vehicle, which can be independently designed taking only
nto account its own state vector, consists in feedbacking all the error
tates associated to this vehicle. To tune the gains for this PID trajectory
racking controller, an LQR control design can be adopted.

In the prescribed motion, the leader follows a simple trajectory
going back and forth along a straight line with a sinusoidal velocity
rofile), and three other vehicles orbit the leader, at an altitude of one
eter. This movement is slow and was carefully designed to fit the
orking space, with reasonable margins between the vehicles and the
rena limits. The periodic motion considered has a period of 20 seconds,
nd was defined during two periods, i.e., 40 seconds. After those 40
econds, the vehicles stop at the last desired position of this movement
which is also the initial position). This consists in a discontinuity on
he desired motion, meaning that a new convergence is initiated at that
nstant. The digraph associated to the interaction topology considered
s presented in Fig. 10. The connection weights are 𝑘𝑖←𝑗 = 1.7, the
erivative gain is 𝛾 = 1.1 s−1, and the integral gain, when used, is
= 0.15 s−3, which can be verified to follow the conditions presented

n Theorem 1. Due to the space constraints of the testing environment,
he initial positions of the vehicles are close to their initial desired
ositions. However, they start with null velocity, so there is still a
onvergence to the desired time varying formation. The vehicles 2 and
are multirotors simulated in-the-loop using the Gazebo simulator, and

he vehicles 1 and 3 are actual multirotors.
The movement on the horizontal plane, when integral action is not

onsidered, is presented in Fig. 11(a) and in Fig. 11(b). After the initial
onvergence, the vehicles achieve the time varying formation in the
orizontal plane, orbiting around the leader vehicle. The movement of
he vehicles on the horizontal plane when considering integral action,
s presented in Figs. 12(a) and 12(b). As can be observed, there are no
oticeable differences between the movement on the horizontal plane
ith and without integral action, apart from the initial instants, which

s also a consequence of slightly different initial positions.
Regarding the evolution of altitude with time, there is a clear

istinction between the experiments with no integral action (Fig. 11(c))
nd with integral action (Fig. 12(c)). Note that the presence of distur-
ances is confirmed when no integral action is present, as the vehicles
limb to an altitude different than the desired altitude of one meter,
nd do not maintain the same altitude. This effect is apparent mainly
12
n vehicle 3, which is one of the vehicles in the arena, and has influence
n the other vehicles. The other vehicle in the arena (vehicle 1) plays
he role of leader, using the trajectory tracking controller (25), and
or that reason it is not influenced by the disturbance of vehicle 3.
owever, it can be noted that the leader vehicle is also subject to a
isturbance, although its effect is smaller. Nonetheless, some influence
s still noticeable, since when the experiment was performed without
ntegral action on the formation tracking controller, the integral action
f the trajectory tracking controller (25) was also not present (the
ntegral gain 𝐾𝐼 was set to zero). However, when performing the
xperiment with integral action on the formation tracking controller,
𝐼 was set to 0.3 s−3, to reject the disturbance acting on the leader
ehicle as well, enabling all vehicles to reach the desired altitude of
ne meter.

.4. Discussion

The goal of this experiment was to assess the ability of the pro-
osed integral action to reject disturbances, and verify that it provides
ncreased capabilities when working with multirotor vehicles. These
ehicles are susceptible to modeling errors, which can be interpreted
s disturbances to the nominal system that is being considered. For
his reason, when applying controllers to this type of vehicles, it is
mportant to keep in mind that these must be designed with some
obustness to these errors. It was shown that the ability of these
ehicles to reach the prescribed formation is considerably influenced
y these disturbances. These effects would be even more evident when
onsidering an increased number of vehicles. In the described experi-
ent, only two physical multirotors were used, and still, considerable

mprovements were observed when adding integral action. It is clear
hat the proposed integral action has a positive effect when performing
ormation control with multirotor vehicles. The effect of disturbances
n multirotor vehicles is clearly more apparent on the vertical axis,
s evidenced by the presented experiment. Since the system of double
ntegrator agents previously described is decoupled, a choice could be
ade to add integral action to the vertical axis alone, as this is where
ost of the effect is visible. However, if flights were to be made in

n open space, an interesting movement for the vehicles would be to
ove in formation with a constant velocity. In this case, if the velocity
as high enough for the drag to have a considerable effect, it would
robably be useful to add integral action to the controller on the other
xis as well.

. Concluding remarks

This paper proposed solutions to enhance the existing formation
ontrol algorithms for vehicles modeled as double integrators with
he feature of integral action to enable disturbance rejection, which
roved to be useful when working with multirotors. New theoretical
esults were achieved regarding the consensus-based protocols used
Fig. 11. Results without integral action.
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Fig. 12. Results with integral action.
w

in this work. More concretely, novel criteria for the convergence of
the third-order consensus protocol described by exact bounds on the
coupling gains were obtained, describing necessary and sufficient con-
ditions for convergence. The effect of disturbances acting on the agents
was also analyzed for the third-order consensus protocol, although
these results can easily be generalized for any order. These consensus
protocols were used to design a formation tracking controller with
constant disturbance rejection and the use of goal seeking terms was
also analyzed. The algorithms were then tested on multirotors and
experimental results were obtained, allowing to successfully validate
the proposed approach. Specifically, it was shown that the proposed
algorithm is able to reject constant disturbances acting on the vehicles,
while following a decentralized approach, and considering a limited
amount of information.

In the future, the authors intend to deepen the analysis of the
proposed third-order consensus protocol considering, for example, the
effect of actuator or network delays. Moreover, the authors also wish
to consider the design of the protocol parameters under the framework
of optimal control theory.
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Appendix A. Results used to prove Proposition 1

Lemma 5 (Veerman & Lyons, 2020). Let 𝐋 be the Laplacian of a strongly
connected digraph. Then, for any non-negative diagonal matrix 𝐃 such that
𝐃 ≠ 𝟎, all eigenvalues of 𝐋 + 𝐃 have positive real part.

Lemma 6 (Veerman & Lyons, 2020). Any generalized Laplacian  can
be made lower block triangular by a relabeling of the vertices, where each
diagonal block is the generalized Laplacian of a strongly connected digraph.

Lemma 7. If all eigenvalues of a generalized Laplacian  have positive
real part, then so do the eigenvalues of  + 𝐃, where 𝐃 is a non negative
diagonal matrix.
13
Proof. It follows from Lemma 6 that  can be made lower block
triangular, where each diagonal block 𝑘 is the generalized Laplacian
of a strongly connected digraph. Note that all eigenvalues of the blocks
𝑘 have positive real part and that 𝑘 can be split as 𝑘 = 𝐋𝑘 + 𝐒𝑘,

here 𝐋𝑘 is the Laplacian of a strongly connected digraph and 𝐒𝑘 is a
non-negative diagonal matrix. It follows from Lemma 5 that 𝐒𝑘 ≠ 𝟎 and
that all eigenvalues of 𝑘+𝐃𝑘 = 𝐋𝑘+

(

𝐒𝑘 + 𝐃𝑘
)

have positive real part,
and therefore all eigenvalues of  + 𝐃 have positive real part. □

Appendix B. Proof of Proposition 1

Remark 5. The intuition for Proposition 1 comes from the interpreta-
tion of self-loops given in Section 5.1.2. For formation control, vehicles
only need to have information of their state with respect to their
neighbors. However, to stabilize their positions in space, absolute state
information is needed. In Section 5.1.2, self-loops are used to express
the knowledge a vehicle has about its absolute state. The intuition for
this result is that absolute state information must flow to all vehicles
in the network in order for them to achieve their desired positions. In
graph theory terminology, that can be stated as follows: for any vertex
𝑗 in a graph  = ( ,), there must be a vertex 𝑖 with a self-loop that
has a directed path to 𝑗.

Taking into account the considerations of Remark 5, consider the
digraph  = ( ,) which is referred in the statement of Proposition 1
and let 𝐷 ⊆  be the set of vertices that have a directed path to all
others (which is non-empty since, by hypothesis,  has a spanning tree).
Clearly, when a vertex 𝑖 ∈ 𝐷 has a self-loop, absolute information
can flow to all vertices in the graph. An important question to raise is
whether the information can reach all vertices when no vertex 𝑖 ∈ 𝐷
has a self-loop. To answer it, note that when there is a vertex 𝑗 ∈ 𝐷
and an arc 𝑖 → 𝑗, then it must be 𝑖 ∈ 𝐷. This means that if 𝑖 ∉ 𝐷
and 𝑗 ∈ 𝐷 there can be no arc 𝑖 → 𝑗. In other words, if only
vertices 𝑖 ∉ 𝐷 have self-loops, information cannot reach the vertices
𝑗 ∈ 𝐷, meaning that there must be a vertex 𝑖 ∈ 𝐷 with a self-loop
(which is in line with Proposition 1). This distinction between vertices
with and without a directed path to all others motivates a partition
of the matrices associated with the digraph , that is used to prove
Proposition 1.

Proof. Consider a labeling of the vertices of  such that 𝐷 =
{

1,… , |𝐷|
}

, where |𝐷| is the number of elements in 𝐷. Then, the
Laplacian and the matrix of self-loop weights of  can be written as

𝐋 =
[

𝐋𝐷 𝟎
𝐌 𝐷̄

]

, and 𝐒 =
[

𝐒𝐷 𝟎
𝟎 𝐒𝐷̄

]

respectively, where 𝐋𝐷 is a Laplacian matrix (the rows of 𝐋 sum to
zero, therefore, so do the rows of 𝐋𝐷), 𝐷̄ is a generalized Laplacian,
and 𝐒𝐷 and 𝐒𝐷̄ are non-negative diagonal matrices that correspond to
a splitting of 𝐒 with dimensions that are compatible with 𝐋 and  .
𝐷 𝐷̄



P. Trindade, P. Batista and R. Cunha Control Engineering Practice 133 (2023) 105436


t

𝐋
h
m
c

m
s
n
l
s
l
r
a

A

P
t
h

⎧

⎪

⎨

⎪

⎩

w
−
t
p
𝛾
a

I

m

t
𝜁
c
𝜁

𝛾

m

0
t
o
s
t
H
p
p
t
b

i
t

𝑟

T
i

h

R

A

C

F

F

F

H

H

K

M

O

O

O

R

R

Concretely, 𝐋𝐷 is the Laplacian of a digraph 𝐷 = (𝐷,𝐷), where
𝐷 ⊆  contains only the arcs 𝑖 → 𝑗 ∈  such that 𝑖, 𝑗 ∈ 𝐷. Note that
𝐷 is strongly connected. The block of zeros in 𝐋 is a consequence of
he fact that if 𝑖 ∉ 𝐷 and 𝑗 ∈ 𝐷 there can be no arc 𝑖 → 𝑗.

Since  and 𝐷 have a spanning tree, it follows from Lemma 1 that
and 𝐋𝐷 have exactly one null eigenvalue and all other eigenvalues

ave positive real part. Recall that the eigenvalues of a block triangular
atrix are the union of the eigenvalues of its diagonal blocks, to

onclude that all the eigenvalues of 𝐷̄ have positive real part.
To prove necessity, consider that no vertex 𝑖 ∈ 𝐷 has a self-loop,

eaning that 𝐒𝐷 = 𝟎. It is straightforward to conclude that  = 𝐋 + 𝐒
till has a null eigenvalue associated to 𝐋𝐷. Therefore, to remove the
ull eigenvalue from 𝐋𝐷, there must be a vertex 𝑖 ∈ 𝐷 with a self-
oop. Sufficiency follows from Lemma 5, since 𝐋𝐷 is the Laplacian of a
trongly connected digraph, and if there is a vertex 𝑖 ∈ 𝐷 with a self-
oop, 𝐒𝐷 ≠ 𝟎, meaning that all eigenvalues of 𝐋𝐷 + 𝐒𝐷 have positive
eal part. It follows from Lemma 7 that all the eigenvalues of 𝐷̄ + 𝐒𝐷̄
lso have positive real part, and the result follows. □

ppendix C. Proof of Lemma 4

roof. Let 𝜎 ∶= Re(𝜂) > 0 and 𝜔 ∶= Im(𝜂). From Lemma 3, it follows
hat the third degree polynomial 𝑝3(𝜆) has all its roots in the open left
alf-plane if and only if

𝜎𝛾 > 0
𝜎3𝛾2 − 𝜁𝜎2𝛾 + 𝜎𝜔2𝛾2 − 𝜔2 > 0
𝜁
(

𝑎𝜁2 + 𝑏𝜁 + 𝑐
)

> 0
, (C.1)

ith 𝑐 =
(

𝜎5 + 2𝜎3𝜔2 + 𝜎𝜔4) 𝛾2 −
(

𝜎2𝜔2 + 𝜔4), 𝑎 = 𝜎3, and 𝑏 =
2𝛾

(

𝜎4 + 𝜎2𝜔2). These conditions, however, are complex and not in-
uitive. In order to simplify them, some polynomial analysis can be
erformed. Firstly, and noting that 𝜎 > 0, the first condition becomes
> 0. Also, in the second condition, 𝜁 only appears in one of the terms,
nd thus it can be isolated, rendering the condition 𝜁 < 𝑟(𝛾), with

𝑟(𝛾) ∶=
𝜎3𝛾2 + 𝜎𝜔2𝛾2 − 𝜔2

𝜎2𝛾
= 𝜎2 + 𝜔2

𝜎
𝛾 − 𝜔2

𝜎2
1
𝛾
.

As for the last condition, let 𝑝(𝜁 ) ∶= 𝑎𝜁2+𝑏𝜁 + 𝑐. It is straightforward to
conclude that 𝑎 > 0. Note that the roots of polynomial 𝑝 (𝜁 ) are given
by

𝜁±(𝛾) =
𝜎2 + 𝜔2

𝜎
𝛾 ±

√

𝜔2𝜎3𝑖 (𝜎2 + 𝜔2)

𝜎3
.

t can be concluded from the above expressions that the roots of 𝑝(𝜁 ) are
real. Furthermore, it is possible to conclude that 𝜁+(𝛾) > 0. Moreover,
the sign of 𝜁−(𝛾) will depend on the value of 𝛾. The remainder of the
proof is achieved by a series of contradictions.

Based on intuition, it is to expect that the condition 𝜁 > 0 must be
et. Assume now that 𝜁 < 0. In order to meet the condition 𝜁 𝑝(𝜁 ) > 0

for 𝜁 < 0, then the polynomial 𝑝(𝜁 ) must also be negative. Since 𝑎 > 0,
hen 𝑝(𝜁 ) is negative between its roots. This means that the conditions
> 𝜁−(𝛾) and 𝜁 < 𝜁+(𝛾) must be met. Since 𝜁 < 0 and 𝜁+(𝛾) > 0, it is

lear that the condition 𝜁 < 𝜁+(𝛾) is met. In order to be possible to have
> 𝜁−(𝛾), then 𝜁−(𝛾) has to be negative, meaning that 𝛾 < 𝛾0, with

0 ∶=

√

𝜔2𝜎3(𝜎2 + 𝜔2)
𝜎2

(

𝜎2 + 𝜔2
) .

Furthermore, to meet 𝜁 < 𝑟(𝛾) and 𝜁 > 𝜁−(𝛾), then 𝑟(𝛾) must be bigger
than 𝜁−(𝛾). Hence,

𝑟(𝛾) − 𝜁−(𝛾) =

√

𝜔2𝜎3(𝜎2 + 𝜔2)
𝜎3

− 𝜔2

𝜎2
1
𝛾
, (C.2)

ust be bigger than zero. However, considering that 𝛾 < 𝛾0, the
following conclusion can be drawn about (C.2)

𝑟(𝛾) − 𝜁−(𝛾) <

√

𝜔2𝜎3(𝜎2 + 𝜔2)
− 𝜔2 1 = 0.
𝜎3 𝜎2 𝛾0

14
Thus, it is concluded that 𝜁 < 0 is not a solution to the set of conditions
previously described.

Considering now that 𝜁 > 0, in order to verify the condition 𝜁 𝑝(𝜁 ) >
, the polynomial 𝑝(𝜁 ) must be also be positive. Since 𝑎 > 0, it is known
hat this happens outside the roots of 𝑝(𝜁 ), which means that 𝜁 < 𝜁−(𝛾)
r 𝜁 > 𝜁+(𝛾). However, the possibility of 𝜁 > 𝜁+(𝛾) is quickly discarded
ince it is straightforward to conclude that 𝜁+(𝛾) > 𝑟(𝛾), meaning that
he condition 𝜁 > 𝜁+(𝛾) is not compatible with condition 𝜁 < 𝑟(𝛾).
ence, the solution that remains is to have 𝜁 < 𝜁−(𝛾). Note that 𝜁 is
ositive. Thus, in order for this condition to be possible, 𝜁−(𝛾) must be
ositive. It is now possible to conclude that in order to have 𝜁−(𝛾) > 0,
hen 𝛾 > 𝛾0. Note that this is more conservative than having 𝛾 > 0
ecause 𝛾0 ≥ 0, hence the condition 𝛾 > 0 can be dropped.

It is now left to verify which of the conditions, 𝜁 < 𝜁−(𝛾) or 𝜁 < 𝑟(𝛾),
s the most conservative. Considering that it must be 𝛾 > 𝛾0, it follows
hat

(𝛾) − 𝜁−(𝛾) >

√

𝜔2𝜎3(𝜎2 + 𝜔2)
𝜎3

− 𝜔2

𝜎2
1
𝛾0

= 0. (C.3)

herefore, 𝑟(𝛾) > 𝜁−(𝛾), hence concluding that the condition 𝜁 < 𝜁−(𝛾)
s the most conservative. Finally, considering 𝜔𝑛 = |𝜂| =

√

𝜎2 + 𝜔2 and
𝜉 = 𝜎

𝜔𝑛
, it follows that

⎧

⎪

⎨

⎪

⎩

𝛾 > 𝛾0 =
√

1−𝜉2
𝜉𝜔𝑛

0 < 𝜁 < 𝜁−(𝛾) =
[

𝜔𝑛
𝜉

(

𝛾 −
√

1−𝜉2
𝜉𝜔𝑛

)] ,

ence concluding the proof. □
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