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A B S T R A C T

This work presents and compares several cooperative navigation solutions for formations of autonomous
underwater vehicles, equipped with depth sensors and capable of taking bearing measurements to their
neighbors under a certain measurement topology. Two approaches based on the extended Kalman filter
are described, one centralized and the other decentralized, which has the advantage of requiring much
less communication and computational complexity with minimal degradation of the produced estimates.
Additionally, four other Kalman filter implementations, based on systems with linear dynamics using artificial
measurements, are also described, one centralized and the remaining ones decentralized. The performance of
these algorithms, under both acyclical and cyclical measurement topologies, is compared using Monte Carlo
simulations, whereby both the mean error and root-mean-squared-error (RMSE) of the computed navigation
estimates are presented.
1. Introduction

Advances in technology in the past years have brought increased
interest towards the development of autonomous vehicles. Not only
do these allow for missions which come at minimal risk for humans,
but they also allow for use of cheaper and smaller vehicles, since
they do not need to be manned. This makes autonomous vehicles a
very captivating technology for activities such as surveillance, scientific
exploration, resource gathering, and rescue missions, among others.

An essential part of a system of autonomous vehicles is the lo-
calization aspect, which is more challenging in underwater applica-
tions due to the lack of reliable access to satellite navigation systems.
Because of this, underwater localization must be performed via rel-
ative measurements and information exchange between agents. Due
to the underwater attenuation of the electromagnetic spectrum used
for conventional communication, centralized approaches might become
impractical due to bandwidth or range restrictions. In recent years,
there has been an increasing interest in performing missions with a high
number of agents, which for most applications need to be localized.
Furthermore, the specific mission might require the agents to maintain
a specific formation, for which correct localization becomes even more
essential in order for the control problem to be tractable. This increase
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(P. Oliveira), csilvestre@umac.mo (C. Silvestre).

in number of agents makes it so centralized estimation algorithms
become impractical. Thus, there is a need for decentralized navigation
algorithms, which scale better with the number of agents and are
possibly more robust.

In this work, the problem of decentralized state estimation for
an underwater vehicle formation is considered, whereby the agents
attempt to localize themselves and estimate their local fluid velocity
through measurements and information exchange with their neighbors.
In previous work by the authors Mendes and Batista (2021), a compari-
son of the two extended Kalman filter based algorithms discussed in this
work was made, and the effect of the measurement topology on their
performance was also studied. In the referenced work, it was concluded
that, while the centralized version of the estimator presented slightly
better position estimation capabilities, it requires a much larger amount
of communication between agents and suffers from a large additional
computational complexity, making the decentralized algorithm a better
fit in most cases. However, it was assumed that the agents have
access to noiseless attitude measurements, which is never the case.
This work expands upon this previous study by introducing attitude
measurement noise, as well as other approaches, which rely on the
definition of artificial measurements and thus can present global error
vailable online 10 January 2023
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convergence under certain conditions. Moreover, extensive simulation
results are presented here for all approaches, considering always noisy
measurements With this study, it is our goal to provide insight on the
strengths and weaknesses of each approach, so that this information
is also available when choosing a navigation algorithm to perform a
certain mission.

1.1. Related work

Much work has been done on the subject of decentralized naviga-
tion. Some approaches, including the ones presented in this work, have
their basis on the widely used Kalman filter, which remains a powerful
tool when it comes to state estimation in the presence of Gaussian white
noise.

In Fallon et al. (2010), the authors attempt to replicate the cen-
tralized Kalman filter by using a communication scheme to distribute
all dead-reckoning and measurement information between agents, such
that they can all manage a centralized Kalman filter with all the infor-
mation. This approach does not take advantage of the benefits of decen-
tralization, such as scalability, and requires too much communication
between agents, which is not desirable. Other works, such as Bahr et al.
(2009), also attempt to reproduce the centralized filter through book-
keeping strategies. In Carrillo-Arce et al. (2013), the authors present a
decentralized solution based on the covariance intersection algorithm
to build a consistent Kalman filter estimator, guaranteeing that its
estimates do not become overconfident, which is important in order
to prevent divergence of solutions based on the extended Kalman
filter (Kia et al., 2016). More recently, Luft et al. (2018) presented a
decentralized algorithm which approximates the centralized Kalman
filter while requiring very limited communication between neighbors
and showing good scalability. This algorithm is applied in this work,
considering bearing and depth measurements in an extended Kalman
filter version of the algorithm, as well as modified version, which uses
the definition of an artificial output. The considered system output is
based on the work Santos et al. (2021), whereby independent observers
are designed using a bearing-based artificial output, which guarantees
global asymptotic stability in acyclical formations. Another approached
based on the Kalman filter for linear time-invariant systems is presented
in Viegas et al. (2018), whereby the authors present a method for
computing gain matrices for each agent. This approach is also used in
this work by applying the method for computing the gain matrices to
artificially constructed position difference measurements.

The topic of decentralized navigation of autonomous vehicle for-
mations is closely related to that of localizing a mobile sensor network
using only local information exchange and measurements at each node.
As an example, Safavi et al. (2018) presents an algorithm to globally
localize a sensor network using range measurements. This is achieved
by transforming such a set of range measurements into barycentric
coordinates, which then allows for writing an update rule with globally
convergent error dynamics.

The remaining of this paper is organized as follows. In Section 2,
the navigation problem is formally described, and in Section 3, two
approaches based on the extended Kalman filter are presented, one is
a centralized extended Kalman filter implementation, and the other is
a decentralized technique, presented in Luft et al. (2018). In Section 4,
approaches based on rewriting the measurement model considering
artificial outputs are described, whereby linear Kalman filters are im-
plemented on these artificial systems, as done in Santos et al. (2021).
Finally, in Section 5, the approaches considered in this work are eval-
uated and their performances compared, making use of Monte Carlo
2

results obtained via simulation. 𝐱
1.2. Notation

In this section, the notation adopted throughout this work is de-
fined. Vectors and matrices are represented in bold and their scalar
entries are superscripted, such that 𝐯 = (𝐯𝑖) ∈ R𝑛 and 𝐀 = (𝐀𝑖𝑗 ) ∈ R𝑚×𝑛.
The identity and zero square matrices of size 𝑛 are represented as 𝐈𝑛 and
𝟎𝑛, respectively. If the zero matrix is not square, then it is represented
as 𝟎𝑚×𝑛 ∈ R𝑚×𝑛. The transpose operator is represented by (⋅)𝑇 and
diag(⋅) builds a diagonal matrix from the arguments. Additionally, the

ronecker product is denoted by the symbol ⊗, such that, for 𝐀 ∈ R𝑚×𝑛,
𝐁 ∈ R𝑝×𝑞 , one has

𝐴⊗ 𝐵 ∶=
⎡

⎢

⎢

⎣

𝐀11𝐁 ⋯ 𝐀1𝑛𝐁
⋮ ⋱ ⋮

𝐀𝑚1𝐁 ⋯ 𝐀𝑚𝑛𝐁

⎤

⎥

⎥

⎦

∈ R𝑝𝑚×𝑞𝑛.

If  denotes a set, || represents its cardinality, i.e., the number of
elements in .

2. Problem statement

Consider a set of AUVs, numbered from 1 to 𝑁 , operating in a 3D
environment such that the movement of each AUV in the inertial frame,
{𝐼}, is described by
{

𝐩̇𝑖(𝑡) = 𝐑𝑖(𝑡)𝐯𝑟𝑖 (𝑡) + 𝐯𝑓𝑖 (𝑡)

𝐯̇𝑓𝑖 (𝑡) = 𝟎3
,

or 𝑖 ∈ {1,… , 𝑁}, where 𝐩𝑖(𝑡) =
[

𝐩𝑥𝑖 (𝑡) 𝐩𝑦𝑖 (𝑡) 𝐩𝑧𝑖 (𝑡)
]𝑇 ∈ R3 represents

the position of the 𝑖th AUV, 𝐑𝑖 ∈ 𝑆𝑂(3) is the rotation matrix that
describes the attitude of the 𝑖th AUV, transforming coordinates in its
body frame to coordinates in the inertial frame, 𝐯𝑟𝑖 (𝑡) is the velocity of
the 𝑖th AUV with respect to the fluid it is operating in, represented in
the AUV’s body frame, and 𝐯𝑓𝑖 (𝑡) is the local velocity of the fluid where
the 𝑖th AUV is operating, expressed in the inertial frame.

Remark 1. Note that, in practical terms, 𝐯𝑓𝑖 is a function of both time
and the position, 𝐩𝑖, of the agent. Indeed: (i) the velocity of the fluid
at a fixed position may change over time; and (ii) the velocity of the
fluid may not be uniform with respect to the inertial position. Hence,
as the 𝑖th AUV moves over time, the local velocity of the fluid where it
operates may change over time, either due to the change in position of
the 𝑖th AUV, time lapse, or both. However, in nominal terms, and for
modeling purposes for each agent, it is assumed to be constant, which is
a reasonable model approximation considering that, in most cases, the
velocity of the fluid is slowly time-varying. In practice, by appropriate
tuning of the parameters of the filtering solution, it is possible to
estimate slowly time-varying quantities, as many filters assume the
presence of random additive process noise. This is a standard approach
to model such quantity.

Since solutions are usually implemented on a digital computer, the
continuous-time kinematics must be discretized, resulting in
{

𝐩𝑖(𝑡𝑘+1) = 𝐩𝑖(𝑡𝑘) + 𝑇 𝐯𝑓𝑖 (𝑡𝑘) + 𝐮𝑖[𝑘]

𝐯𝑓𝑖 (𝑡𝑘+1) = 𝐯𝑓𝑖 (𝑡𝑘)
, (1)

here

𝑖[𝑘] = ∫

𝑡𝑘+1

𝑡𝑘
𝐑𝑖(𝑡)𝐯𝑟𝑖 (𝑡)𝑑𝑡 (2)

nd 𝑇 is the sampling time. In state-space form, letting the state of the
th agent be defined as

𝑖[𝑘] ∶=
[

𝐩𝑖(𝑡𝑘)
𝐯𝑓𝑖 (𝑡𝑘)

]

∈ R6, (3)

nd following (1), the motion model of an agent is given by
𝑖[𝑘 + 1] = 𝐀𝐱𝑖[𝑘] + 𝐁𝐮𝑖[𝑘],
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Fig. 1. Example measurement graph.

here

∶=
[

𝐈3 𝑇 𝐈3
𝟎3 𝐈3

]

(4)

and

𝐁 ∶=
[

𝐈3
𝟎3

]

. (5)

The AUVs are equipped with sensors that enable them to make
measurements about themselves, such as depth and attitude measure-
ments; and about their neighbors, such as bearing measurements. In
addition to this, they are also capable of some degree of communication
between themselves, enabling them to share quantities, such as position
estimates, with their neighbors.

At this point, it is assumed that if the 𝑗th AUV is capable of
taking measurements about the 𝑖th agent, then there is a bidirectional
communication link between the two. The formation’s measurement
configuration can then be represented with a single directed graph
 ∶= ( , ), where  is the set of AUVs and  is the set of directed
edges, representing measurement information flow. The 𝑗th AUV takes
measurements about the 𝑖th AUV if there is a directed edge leaving
node 𝑖 and entering node 𝑗, i.e., if there is an edge 𝑒𝑖𝑗 = (𝑖, 𝑗). The
neighbor set of the 𝑖th AUV is then defined as the set of AUVs that
it takes measurements about, i.e., 𝑖 = {𝑗 ∶ (𝑗, 𝑖) ∈ }. It is also
assumed that  can be further separated into two disjoint subsets, 
and  , such that  ∪ =  . The set  contains the so-called leader
AUVs, which are assumed to able to estimate their position with some
accuracy by themselves, and the set  contains the follower AUVs, that
must estimate their state based on measurements about their neighbors
and communication with them.

Example 1. Consider the measurement graph, , presented in Fig. 1.
In this example, the leader set is  = {1} and the follower set is
 = {2, 3}, which is graphically represented with grayed out nodes.
As per the previous definitions, the 2nd AUV takes measurements about
and receives information from the 1st and 3rd agents. Likewise for the
3rd AUV, which takes measurements about agents 1 and 2, one has
3 = {1, 2}. The neighbor sets of the AUVs 1 and 2 are 1 = ∅ and
2 = {1, 3}, respectively.

Consider now that the AUVs in  are equipped with pressure
gauges and attitude and heading reference systems, so that they can
determine their own depth and orientation, as well some sensor that
allows them to measure bearings to neighboring AUVs. As an example,
an ultra-short baseline acoustic positioning system readily gives bearing
measurements (Reis et al., 2016). Then, according to the measurement
graph, at time 𝑡 , in addition to its noisy attitude measurement, given
3

𝑘 c
by its rotation matrix, AUV 3 has access to the following information

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑧3(𝑡𝑘) = 𝐩𝑧3(𝑡𝑘) + 𝑒1(𝑡𝑘)

𝜃31(𝑡𝑘) = 𝜃(𝐩3(𝑡𝑘),𝐩1(𝑡𝑘)) + 𝑒2(𝑡𝑘)

𝜙31(𝑡𝑘) = 𝜙(𝐩3(𝑡𝑘),𝐩1(𝑡𝑘)) + 𝑒3(𝑡𝑘)

𝜃32(𝑡𝑘) = 𝜃(𝐩3(𝑡𝑘),𝐩2(𝑡𝑘)) + 𝑒4(𝑡𝑘)

𝜙32(𝑡𝑘) = 𝜙(𝐩3(𝑡𝑘),𝐩2(𝑡𝑘)) + 𝑒5(𝑡𝑘)

𝐩̂1(𝑡𝑘) = 𝐩1(𝑡𝑘) + 𝐞6(𝑡𝑘)
𝐩̂2(𝑡𝑘) = 𝐩2(𝑡𝑘) + 𝐞7(𝑡𝑘)

,

here 𝐩3 represents the position of AUV 3, 𝐩̂𝑗 is a position estimate of
UV 𝑗 ∈ {1, 2} that is communicated to AUV 3, 𝜃(𝐩𝑖,𝐩𝑗 ) and 𝜙(𝐩𝑖,𝐩𝑗 )
re functions that return the noiseless bearing angles, measured by
n agent with index 𝑖 about another agent with index 𝑗, represented
n agent 𝑖’s body frame. The quantities 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝐞6, and 𝐞7
re unknown errors terms, due to, for instance, measurement noise or
stimation errors.

Considering the measured bearing angles, 𝜃𝑖𝑗 and 𝜙𝑖𝑗 , these can
e used to construct the direction vector from agent 𝑖 to agent 𝑗
epresented in the inertial frame, 𝐝𝑖𝑗 , through

𝑖𝑗 (𝑡𝑘) = 𝐑𝑖(𝑡𝑘)
⎡

⎢

⎢

⎣

cos 𝜃𝑖𝑗 (𝑡𝑘) cos𝜙𝑖𝑗 (𝑡𝑘)
cos 𝜃𝑖𝑗 (𝑡𝑘) sin𝜙𝑖𝑗 (𝑡𝑘)

sin 𝜃𝑖𝑗 (𝑡𝑘)

⎤

⎥

⎥

⎦

=
𝐩𝑗 (𝑡𝑘) − 𝐩𝑖(𝑡𝑘)

‖𝐩𝑗 (𝑡𝑘) − 𝐩𝑖(𝑡𝑘)‖
,

(6)

where the last equality holds given noiseless attitude and bearing
measurements. Note that the rotation matrix built from the noisy
attitude angles, 𝐑𝑖(𝑡𝑘), is used both in (6) and (2). While this is not
approached in this work, there could be a correlation between the
system model and the measurement model errors in the presented
approaches, which could end up pushing the steady-state estimates
away from the true state of the system. In practice, simulation results
show that the proposed solutions are not affected, at least significantly,
by any correlation effects between noises.

The decentralized navigation problem addressed in this paper is
to estimate the position 𝐩𝑖(𝑡) of each AUV, as well as its local fluid
velocity 𝐯𝑓𝑖 (𝑡), constrained by the fact that the agents only have access
o local information that they can obtain, be it through measurements
r limited communication with their neighbors. In addition to the
ecentralized navigation approaches presented in this work, centralized
olutions are presented as well, in order to establish a baseline for
omparison with their decentralized alternatives.

. Extended Kalman filter solutions

The most straightforward approach to the navigation problem is by
sing the measurements captured by the AUVs directly by employing
n extended Kalman filter (EKF), which requires the linearization of the
bservation model Gelb (1974), Jazwinski (1970). Notice, however,
hat EKF-based solutions are usually not guaranteed to be globally
onvergent to the true solution and might require fine tuning of the
ilter parameters.

.1. Centralized extended Kalman filter

While the centralized extended Kalman filter (CEKF) has access
o all data, this comes with some serious drawbacks, such as heavy
eliance on communication between AUVs and lack of scalability. In
ome cases, the implementation of a fully centralized approach can
ecome very cumbersome or even unfeasible. Since all the data must
e available at a single unit for computation, some information might
eed to be transmitted through long distances, thus resulting in the
ntroduction of a delay into the system, which might not be easy to
eal with. Regardless, centralized approaches have the potential to
ive the ‘‘best’’ estimates, and, as such, the CEKF is presented here for

omparison with its decentralized counterpart, presented in Section 3.2.
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3.1.1. Motion updates
Define the whole state as

𝐱[𝑘] ∶=
⎡

⎢

⎢

⎣

𝐱1[𝑘]
⋮

𝐱𝑁 [𝑘]

⎤

⎥

⎥

⎦

∈ R6𝑁 ,

here each 𝐱𝑖 is defined as in (3), representing the position and local
luid velocity of each AUV. Then, considering 𝐀 and 𝐁 as defined in (4)
nd (5), the complete system motion model is given by

[𝑘 + 1] = 𝐀𝑐𝐱[𝑘] + 𝐁𝑐𝐮[𝑘]+𝐰[𝑘],

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐀𝑐 = 𝐈𝑁 ⊗ 𝐀
𝐁𝑐 = 𝐈𝑁 ⊗ 𝐁

𝐮[𝑘] =
⎡

⎢

⎢

⎣

𝐮1[𝑘]
⋮

𝐮𝑁 [𝑘]

⎤

⎥

⎥

⎦

, (7)

where 𝑁 = || is the number of agents, and 𝐰 is the process noise. No-
tice here the presence of process noise, which accounts for unmodeled
uncertainties. In this specific case, 𝐮 is actually computed using sensor
measurements, which are corrupted by noise. This can be modeled with
the additional process noise term. Moreover, it can also be used to
model slowly time-varying fluid velocities, considering a random walk
model. The prediction step for the CEKF is given by
{

𝐱̂[𝑘 + 1|𝑘] = 𝐀𝑐 𝐱̂[𝑘] + 𝐁𝑐𝐮[𝑘]
𝚺[𝑘 + 1|𝑘] = 𝐀𝑐𝚺[𝑘|𝑘]𝐀𝑇

𝑐 +𝐐𝑐
,

where 𝐱̂ and 𝚺 are the state estimate mean and covariance matrix,
respectively, and 𝐐𝑐 is the centralized process noise covariance matrix.
The process noise of each agent can be independently parameterized
via 𝐐𝑖. Then, 𝐐𝑐 is obtained by concatenating the individual covariance
matrices, as in 𝐐𝑐 = diag(𝐐1,… ,𝐐𝑁 ).

3.1.2. Measurement updates
In the following, the discrete-time dependence of the agents is omit-

ted for clarity, unless explicitly needed. Let 𝐲𝑖 = 𝐡𝑖(𝐱) be a measurement
taken by an AUV with index 𝑖, and let the complete measurement
vector, 𝐲, be the concatenation of all the individual measurement
vectors, as in

𝐲 = 𝐡(𝐱) =
⎡

⎢

⎢

⎣

𝐡1(𝐱)
⋮

𝐡𝑁 (𝐱)

⎤

⎥

⎥

⎦

+𝐯[𝑘],

where 𝐯 is the measurement noise. In order to perform the update step
of the CEKF, the Jacobian of the measurement model must be computed
according to

𝐉(𝐱) =
⎡

⎢

⎢

⎣

𝜕𝐡1∕𝜕𝐱
⋮

𝜕𝐡𝑁∕𝜕𝐱

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜕𝐡1∕𝜕𝐱1 ⋯ 𝜕𝐡1∕𝜕𝐱𝑁
⋮ ⋱ ⋮

𝜕𝐡𝑁∕𝜕𝐱1 ⋯ 𝜕𝐡𝑁∕𝜕𝐱𝑁

⎤

⎥

⎥

⎦

. (8)

Since the real state is unknown, the Jacobian, 𝐉 = 𝐉(𝐱), is approximated
by 𝐉̂ = 𝐉(𝐱̂), hence one of the reasons why a good enough initial state
estimate is necessary.

Since EKF-based approaches allow for arbitrary measurement mod-
els, the general update equations are presented here, and some specific
measurement models are described in the following section. Upon
receiving measurements, the CEKF update equations are given by

⎧

⎪

⎨

⎪

⎩

𝐱̂[𝑘 + 1|𝑘 + 1] = 𝐱̂[𝑘 + 1|𝑘] +𝐊 (𝐲[𝑘 + 1] − 𝐲̂[𝑘 + 1])

𝚺[𝑘 + 1|𝑘 + 1] =
(

𝐈6𝑁 −𝐊𝐉̂
)

𝚺[𝑘 + 1|𝑘]
,

where

𝐊 = 𝚺[𝑘 + 1|𝑘]𝐉̂𝑇
(

𝐉̂𝚺[𝑘 + 1|𝑘]𝐉̂𝑇 + 𝐑
)−1
4

𝑐 r
is the Kalman gain, with 𝐉̂ evaluated using the predicted estimate,
𝐱̂[𝑘 + 1|𝑘], and 𝐑𝑐 is the centralized measurement vector noise covari-
ance matrix. Lastly, 𝐲̂[𝑘 + 1] = 𝐡(𝐱̂[𝑘 + 1|𝑘]) is the expected value of the
measurement vector, given the current state estimate.

3.1.3. Measurement models
Some common measurement models will now be introduced. In

particular, models for position, depth, and bearing measurements are
presented. For ease of representation, the explicit discrete-time depen-
dence is omitted unless explicitly necessary.

If the AUV making a measurement has direct access to position
measurements 𝐲𝑖 = 𝐡𝑖(𝐱) = 𝐩𝑖(𝑡𝑘), its relevant part in (8) is given by
𝜕𝐡𝑖
𝜕𝐱

(𝐱) =
[

⋯ 𝐈3 𝟎3 ⋯
]

,

where 𝑖 is the index of the measuring agent and 𝐈3 occupies the columns
corresponding to 𝐩𝑖 in the complete state vector.

If the 𝑖th AUV takes bearing measurements about AUVs in its
neighbor set, which, for simplicity, is assumed to be 𝑖 = {1,… , |𝑖|},
in addition to a depth measurement about itself, 𝑧𝑖(𝑡𝑘) = 𝐩𝑧𝑖 (𝑡𝑘), the
measurement model is given by

𝐡𝑖(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐡𝑖1
⋮

𝐡𝑖|𝑖|

𝐩𝑧𝑖

⎤

⎥

⎥

⎥

⎥

⎦

,

where

𝐡𝑖𝑗 (𝐱) = 𝐡𝑏(𝐩𝑖,𝐩𝑗 ) =
[𝜃(𝐩𝑖,𝐩𝑗 )
𝜙(𝐩𝑖,𝐩𝑗 )

]

=
⎡

⎢

⎢

⎣

atan2
(

𝐩𝑧𝑗 − 𝐩𝑧𝑖 ,
√

(𝐩𝑥𝑗 − 𝐩𝑥𝑖 )2 + (𝐩𝑦𝑗 − 𝐩𝑦𝑖 )2
)

atan2
(

𝐩𝑦𝑗 − 𝐩𝑦𝑖 ,𝐩
𝑥
𝑗 − 𝐩𝑥𝑖

)

⎤

⎥

⎥

⎦

,

and the angles 𝜃 and 𝜙 are represented in the inertial frame. Bearing
measurements are measured in the AUV’s body frame. However, the
AUVs measure their orientation and, as such, can rotate the bearing
measurement so that it is represented in {𝐼}. The Jacobian for the
model 𝐡𝑖 is given by

𝜕𝐡𝑖
𝜕𝐱

(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝐡𝑖1∕𝜕𝐱
⋮

𝜕𝐡𝑖|𝑖|
∕𝜕𝐱

𝐂𝑧

⎤

⎥

⎥

⎥

⎥

⎦

,

where
𝜕𝐡𝑖𝑗
𝜕𝐱

(𝐱) =
[

⋯ 𝐉𝑏𝑖 (𝐱) ⋯ 𝐉𝑏𝑗 (𝐱) ⋯
]

,

ith 𝐉𝑏𝑖 ∶= 𝜕𝐡𝑏∕𝜕𝐱𝑖 and 𝐉𝑏𝑗 ∶= 𝜕𝐡𝑏∕𝜕𝐱𝑗 , and 𝐂𝑧 ∈ R1×6𝑁 is such that all
ntries are zero except the one corresponding to 𝐩𝑧𝑖 in the entire state
ector.

While depth measurements are simple, geometrically, they remove a
egree of freedom from the possible positions of the 𝑖th AUV, namely in
he 𝑧 direction. As such, coupling a depth measurement with a bearing
easurement to another AUV will fix the possible positions of this agent

o a single point, given the position of the 𝑗th AUV, and given that they
o not lie on the same horizontal plane. The explicit expression of the
earing model Jacobian is omitted for brevity.

.2. Decentralized extended Kalman filter

In this section, an implementation of the solution presented in Luft
t al. (2018) is described for depth and bearing measurements, which
ill be labeled in this work as decentralized extended Kalman filter

DEKF). This asynchronous approach is completely decentralized and

elies only on local communication between agents.
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3.2.1. Motion model
The first insight behind this solution is that the cross-covariances

between agents are only necessary when update steps happen. Because
of this, if each agent can correctly update its cross-covariance to other
agents without communicating with them, the motion update step of
the Kalman filter presents no issue.

Consider the state of the 𝑖th agent, 𝐱𝑖, defined as in (3), and denote
its filtered estimate and covariance by 𝐱̂𝑖 and 𝚺̂𝑖𝑖, respectively. Note
that the DEKF approximates the CEKF, thus the covariances of each
agent and their cross-covariances to other agents will not be exact,
hence the chosen hat notation. Consider also the decomposition of the
cross-covariance between agents 𝑖 and 𝑗, 𝚺̂𝑖𝑗 , such that

𝚺̂𝑖𝑗 [𝑘] = 𝚽̂𝑖𝑗 [𝑘]𝚽̂𝑇
𝑗𝑖[𝑘].

Let each agent carry its estimated belief, 𝑖 ∶= {𝐱̂𝑖, 𝚺̂𝑖𝑖}, and cross-
covariance factor, 𝚽̂𝑖𝑗 , between itself and other agents it has knowledge
of, i.e. 𝚽̂𝑖𝑗 for all 𝑗 ∈ 𝑖. The corresponding CEKF prediction equations
for agent 𝑖, which account for its motion, are given by

⎧

⎪

⎨

⎪

⎩

𝐱̂𝑖[𝑘 + 1|𝑘] = 𝐀𝐱̂𝑖[𝑘|𝑘] + 𝐁𝐮𝑖[𝑘]
𝚺𝑖𝑖[𝑘 + 1|𝑘] = 𝐀𝚺𝑖𝑖[𝑘|𝑘]𝐀𝑇 +𝐐𝑖

𝚺𝑖𝑗 [𝑘 + 1|𝑘] = 𝐀𝚺𝑖𝑗 [𝑘|𝑘]𝐀𝑇

, (9)

and likewise for the agent with index 𝑗. So, if each AUV updates its
cross-covariance factors to other AUVs through

𝚽̂𝑖𝑗 [𝑘 + 1|𝑘] = 𝐀𝚽̂𝑖𝑗 [𝑘|𝑘] ∀𝑗 ∈ 𝑖 (10)

when performing prediction steps, when they meet, their reconstructed
cross-covariance is given by

𝚺̂𝑖𝑗 [𝑘 + 1|𝑘] = 𝐀𝚽̂𝑖𝑗 [𝑘|𝑘]𝚽̂𝑗𝑖[𝑘|𝑘]𝑇𝐀𝑇

= 𝐀𝚺̂𝑖𝑗 [𝑘|𝑘]𝐀𝑇

= 𝚺𝑖𝑗 [𝑘 + 1|𝑘],

if it holds that 𝚺̂𝑖𝑗 [𝑘|𝑘] = 𝚺𝑖𝑗 [𝑘|𝑘]. In general, 𝚺̂𝑖𝑗 [𝑘|𝑘] ≠ 𝚺𝑖𝑗 [𝑘|𝑘], how-
ever, what is important is that, since all terms are available, the
prediction step of the CEKF can be reproduced exactly at each agent in
a decentralized way while requiring no communication, thus resulting
in no loss of estimation capabilities with respect to this step. All AUVs
then predict their beliefs and cross-covariance factors to other agents
according to (9) and (10), substituting 𝐱𝑖 and 𝚺𝑖𝑖 by their estimated
state and covariance matrix, 𝐱̂𝑖 and 𝚺̂𝑖𝑖.

3.2.2. Observation model
A major difference should now be noted between the centralized

and decentralized versions of this filter. While all the measurements
are available simultaneously for computation of the update step in the
CEKF, the DEKF is asynchronous and, as such, only one measurement
vector is considered at a time. In a centralized approach, this would
be equivalent to considering an observation model containing only one
measurement at a time and performing several updates at each time
step.

Consider that a leader AUV with index 𝑖 takes a measurement,
𝐲𝑖, of its position. Dropping the explicit discrete-time dependence, the
measurement model for this agent is given by

𝐡(𝐱𝑖) =
[

𝐈3 𝟎3
]

𝐱𝑖 = 𝐂𝑖𝐱𝑖.

Since this equation only involves the measuring agent, the estimated
belief and cross-covariance factors to other agents are updated accord-
ing to

⎧

⎪

⎨

⎪

𝐱̂𝑖[𝑘 + 1|𝑘 + 1] = 𝐱̂𝑖[𝑘 + 1|𝑘] +𝐊𝑖(𝐲𝑖[𝑘 + 1] − 𝐲̂𝑖[𝑘 + 1])

𝚺̂𝑖𝑖[𝑘 + 1|𝑘 + 1] =
(

𝐈6 −𝐊𝑖𝐂𝑖
)

𝚺̂𝑖𝑖[𝑘 + 1|𝑘]
̂ ( ) ̂

, (11)
5

⎩
𝚽𝑖𝑗 [𝑘 + 1|𝑘 + 1] = 𝐈6 −𝐊𝑖𝐂𝑖 𝚽𝑖𝑗 [𝑘 + 1|𝑘] s
where 𝐲̂𝑖[𝑘+ 1] = 𝐡(𝐱̂𝑖[𝑘+ 1|𝑘]) is the expected measurement vector, 𝐊𝑖
is the Kalman gain, given by

𝐊𝑖 = 𝚺̂𝑖𝑖[𝑘 + 1|𝑘]𝐂𝑇
𝑖

(

𝐂𝑖𝚺̂𝑖𝑖[𝑘 + 1|𝑘]𝐂𝑇
𝑖 + 𝐑𝑖

)−1
,

and 𝐑𝑖 is the measurement noise covariance matrix. Note that the
last equation of (11) should be performed for all agents that AUV 𝑖
has knowledge of. In a centralized Kalman filter, measurements taken
by an agent also affect the state of all agents that are correlated
with it through previous measurements. However, in order to prevent
excessive communication, the estimated beliefs of other agents are left
unchanged.

Consider now the case where a follower AUV with index 𝑖 takes
a bearing measurement about another AUV with index 𝑗 and a depth
measurement about itself. Let 𝐱̂𝑎 be the joint estimate of the states, 𝐱𝑖
and 𝐱𝑗 , and 𝚺̂𝑎𝑎 its estimated covariance, such that

𝐱̂𝑎[𝑘] ∶=
[

𝐱̂𝑖
𝐱̂𝑗

]

, 𝚺̂𝑎𝑎 ∶=
[

𝚺̂𝑖𝑖 𝚺̂𝑖𝑗
𝚺̂𝑗𝑖 𝚺̂𝑗𝑗

]

.

he update equations for the joint system are given by

⎧

⎪

⎨

⎪

⎩

𝐱̂𝑎[𝑘 + 1|𝑘 + 1] = 𝐱̂𝑎[𝑘 + 1|𝑘] +𝐊𝑎(𝐲𝑖[𝑘 + 1] − 𝐲̂𝑖[𝑘 + 1])

𝚺̂𝑎𝑎[𝑘 + 1|𝑘 + 1] =
(

𝐈6 −𝐊𝑎𝐉̂𝑎
)

𝚺̂𝑎𝑎[𝑘 + 1|𝑘]
, (12)

here 𝐲𝑖[𝑘 + 1] is the concatenation of the bearing measurement to
nother AUV with the captured depth measurement, 𝐲̂𝑖[𝑘 + 1] is its
xpected value, 𝐉̂𝑎 =

[

𝐉𝑓𝑖 (𝐱̂𝑖, 𝐱̂𝑗 ) 𝐉𝑓𝑗 (𝐱̂𝑖, 𝐱̂𝑗 )
]

is the Jacobian matrix of
he joint system’s measurement model computed using the predicted
tate estimates, 𝐱̂𝑖[𝑘 + 1|𝑘] and 𝐱̂𝑗 [𝑘 + 1|𝑘], with 𝐉𝑓𝑖 and 𝐉𝑓𝑗 defined as

𝐉𝑓𝑖 (𝐱𝑖, 𝐱𝑗 ) ∶=
[

𝐉𝑏𝑖 (𝐱𝑖, 𝐱𝑗 )
𝐂𝑧

]

𝐉𝑓𝑗 (𝐱𝑖, 𝐱𝑗 ) ∶=
[

𝐉𝑏𝑗 (𝐱𝑖, 𝐱𝑗 )
𝟎1×6

] ,

nd 𝐊𝑎 is the Kalman gain, given by

𝑎 = 𝚺̂𝑎𝑎[𝑘 + 1|𝑘]𝐉̂𝑇𝑎
(

𝐉̂𝑎𝚺̂𝑎𝑎[𝑘 + 1|𝑘]𝐉̂𝑇𝑎 + 𝐑𝑖

)−1
,

here 𝐑𝑖 is the measurement noise covariance matrix. These quantities
an be computed locally at the measuring agent, requiring only that
UV 𝑗 transmits its estimated belief, 𝑗 , and its cross-covariance factor

o agent 𝑖, 𝚽̂𝑗𝑖. AUV 𝑖 is then responsible for reconstructing the joint
ystem’s belief and performing the joint update equations. It then
ommunicates to AUV 𝑗 its updated belief, obtained from the entries
f 𝐱̂𝑎[𝑘 + 1|𝑘 + 1] and 𝚺̂𝑎𝑎[𝑘 + 1|𝑘 + 1]. In order not to double-count
nformation, the cross-covariance between agents 𝑖 and 𝑗 must be
istributed correctly. Since the decomposition of the cross-covariance
etween agents can be done in any way, it can be agreed beforehand,
s done in Luft et al. (2018), that upon receiving updated estimates,
gent 𝑗 sets its cross-covariance factor to AUV 𝑖 as the identity matrix,
.e. 𝚽̂𝑗𝑖[𝑘 + 1|𝑘 + 1] = 𝐈6, and AUV 𝑖 sets

̂
𝑖𝑗 [𝑘 + 1|𝑘 + 1] = 𝚺̂𝑖𝑗 [𝑘 + 1|𝑘 + 1], (13)

here 𝚺̂𝑖𝑗 [𝑘 + 1|𝑘 + 1] can be obtained from the updated joint state
ovariance matrix, 𝚺̂𝑎𝑎[𝑘 + 1|𝑘 + 1]. This way, the cross-covariance
etween these two agents is preserved, since

̂
𝑖𝑗 [𝑘 + 1|𝑘 + 1]𝐈𝑇6 = 𝚺̂𝑖𝑗 [𝑘 + 1|𝑘 + 1],

nd there is no need for communicating to agent 𝑗 a new cross-
ovariance factor. As before, in order to prevent communication be-
ween participating and non-participating agents, the state and covari-
nce estimates of the latter are left unchanged.

The only terms that still need to tracked are the cross-covariance
actors between participating and non-participating agents. This is

tated to be the main contribution of the work in Luft et al. (2018) and,



Ocean Engineering 270 (2023) 113564P. Mendes et al.

a

𝐃

S
o
m

𝐲

w
e
b

𝐂

w

f
g
a
i
e
a
t
C

4

d
a
f

𝐱

a
t
C
p
{

w
n

i
c

𝐲

w

as such, only the main result is presented here. The interested reader
is referred to the original work for details. The last update equation
performed by participating agents is

𝚽̂𝑖𝑙[𝑘 + 1|𝑘 + 1] = 𝚺̂𝑖𝑖[𝑘 + 1|𝑘 + 1]𝚺̂−1
𝑖𝑖 [𝑘 + 1|𝑘]𝚽̂𝑖𝑙[𝑘 + 1|𝑘], (14)

where 𝑖 represents the index of participating AUVs and 𝑙 the index
of non-participating agents. Note that both participating agents should
perform the update (14).

To summarize, updates performed by leader AUVs when they take
a measurement of their position are performed using (11). When an
agent with index 𝑖 takes a bearing measurement about AUV with index
𝑗, the updates are done using (12), (13), and (14), with AUV 𝑗 setting
𝚽̂𝑗𝑖[𝑘 + 1|𝑘 + 1] = 𝐈6 upon receiving its updated belief, and performing
(14) locally as well.

4. Artificial measurement solutions

An alternative to EKF-based filters is to construct artificial outputs
such that the measurement model becomes linear, and then use this
model to build an observer. With this approach, global convergence
of the error to zero can be achieved depending on the measurement
topology, increasing the time-efficiency of missions since an initial
setup process is not required.

4.1. Independently interconnected Kalman filters

In this section, the approach considered in Santos et al. (2021) is
presented. Briefly, it is based on constructing observers which present
globally convergent error dynamics for each agent, and interconnecting
them by using their estimates as ‘‘true’’ information, which is fed to
the other observers. Because no cross-measurement information is kept
between agents and each agent’s estimate is taken as true information
by other agents, this estimator achieves the worst performance out
of the considered ones, though it does achieve globally convergent
dynamics, provided that each agent’s observer is globally observable,
and the information flow is unidirectional, as is the case for tiered
formations (Santos et al., 2021; Viegas et al., 2016).

The prediction and update equations for each agent’s observer
follow the general Kalman filter dynamics. Letting 𝐱̂𝑖 and 𝚺𝑖𝑖 be the state
estimate and covariance of the 𝑖th AUV, respectively, the prediction
step equations are given by
{

𝐱̂𝑖[𝑘 + 1|𝑘] = 𝐀𝐱̂[𝑘|𝑘] + 𝐁𝐮𝑖[𝑘]
𝚺𝑖𝑖[𝑘 + 1|𝑘] = 𝐀𝚺𝑖𝑖[𝑘|𝑘]𝐀𝑇 +𝐐𝑖

,

where 𝐐𝑖 is the process noise covariance matrix of the agent. Likewise,
the update equations are
{

𝐱̂𝑖[𝑘 + 1|𝑘 + 1] = 𝐱̂𝑖[𝑘 + 1|𝑘] +𝐊𝑖(𝐲𝑖[𝑘 + 1] − 𝐂𝑖𝐱̂𝑖[𝑘 + 1|𝑘])

𝚺𝑖𝑖[𝑘 + 1|𝑘 + 1] =
(

𝐈6 −𝐊𝑖𝐂𝑖
)

𝚺𝑖𝑖[𝑘 + 1|𝑘]
,

where 𝐂𝑖 is the observation matrix to be described in the following,
𝐲𝑖[𝑘 + 1] is the observation vector, constructed using measurements
obtained at time 𝑡 = 𝑡𝑘+1, and

𝐊𝑖 = 𝚺𝑖𝑖[𝑘 + 1|𝑘]𝐂𝑇
𝑖
(

𝐂𝑖𝚺𝑖𝑖[𝑘 + 1|𝑘]𝐂𝑇
𝑖 + 𝐑𝑖

)−1

is the Kalman gain, where 𝐑𝑖 is a suitable measurement noise covari-
ance matrix.

Assuming that the 𝑖th AUV is a leader, then it has direct access to
position measurements, such that 𝐲𝑖[𝑘 + 1] is its position measurement
vector, and 𝐂𝑖 =

[

𝐈3 𝟎3
]

. If, instead, the 𝑖th agent is a follower AUV
which successfully obtains bearing measurements about its neighbors,
𝑗 ∈ 𝑖, and its depth, it then has access to 𝑧𝑖 = 𝐩𝑧𝑖 (𝑡𝑘+1) and 𝐝𝑖𝑗 (𝑡𝑘+1)
for all 𝑗 ∈ 𝑖, computed from the obtained bearing angles, 𝜃𝑖𝑗 and
𝜙𝑖𝑗 , according to (6). In the following, it is assumed, for ease of
6

representation and without loss of generality, that 𝑖 = {1,… , |𝑖|}. i
Upon building the direction vector, the projection matrix,

𝐃𝑖𝑗 (𝑡𝑘) ∶= 𝐝𝑖𝑗 (𝑡𝑘)𝐝𝑇𝑖𝑗 (𝑡𝑘), (15)

and its orthogonal complement,

𝐃̄𝑖𝑗 (𝑡𝑘) ∶= 𝐈3 − 𝐝𝑖𝑗 (𝑡𝑘)𝐝𝑇𝑖𝑗 (𝑡𝑘), (16)

re constructed and the following equality holds,

̄
𝑖𝑗 (𝑡𝑘)𝐩𝑖(𝑡𝑘) = 𝐃̄𝑖𝑗 (𝑡𝑘)𝐩𝑗 (𝑡𝑘).

ince the true positions of the neighboring AUVs are unknown, the
bservation vector of the 𝑖th AUV, considering also its depth measure-
ent, is defined as

𝑖[𝑘 + 1] ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐃̄𝑖1(𝑡𝑘+1)𝐩̂1(𝑡𝑘+1|𝑡𝑘)
⋮

𝐃̄𝑖|𝑖|
(𝑡𝑘+1)𝐩̂|𝑖|

(𝑡𝑘+1|𝑡𝑘)
𝑧𝑖(𝑡𝑘+1)

⎤

⎥

⎥

⎥

⎥

⎦

,

here 𝐩̂𝑗 (𝑡𝑘+1|𝑡𝑘) is the predicted position estimate of the 𝑗th agent,
xtracted from 𝐱̂𝑗 [𝑘 + 1|𝑘], and 𝑧𝑖 is the depth measurement obtained
y the 𝑖th agent. Likewise, the observation matrix is defined as

𝑖 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐃̄𝑖1(𝑡𝑘+1) 𝟎3
⋮

𝐃̄𝑖|𝑖|
(𝑡𝑘+1) 𝟎3

𝐞𝑧 𝟎1×3

⎤

⎥

⎥

⎥

⎥

⎦

,

here 𝐞𝑧 =
[

0 0 1
]

.
In Santos et al. (2021), an observer such as this one is considered

or the case of acyclical formations, where it is shown that it exhibits
lobally exponentially stable error dynamics, provided that the leader
gents also present this kind of error dynamics. If cycles are introduced
nto the measurement graph, there will be a reintroduction of the
stimation errors into some of the agents, which raises some questions
bout the convergence of the proposed observer. The performance of
his filter under a cyclical measurement topology is analyzed via Monte
arlo simulations in Section 5.

.2. Centralized observer

The centralized version of the observers based on bearing and
epth measurements is presented in this section. Again, a centralized
pproach might not be feasible in practice, but it serves as a baseline
or comparison with the decentralized approaches studied in this work.

Let the state of the centralized system be defined as

[𝑘] ∶=
⎡

⎢

⎢

⎣

𝐱1[𝑘]
⋮

𝐱𝑁 [𝑘]

⎤

⎥

⎥

⎦

∈ R6𝑁

nd let 𝐱̂ and 𝚺 be its state estimate and covariance matrix, respec-
ively. The motion model of this approach is the same as that of the
EKF, i.e., upon receiving the control signals, the agents’ estimates are
redicted according to

𝐱̂[𝑘 + 1|𝑘] = 𝐀𝑐 𝐱̂[𝑘|𝑘] + 𝐁𝑐𝐮[𝑘]
𝚺[𝑘 + 1|𝑘] = 𝐀𝑐𝚺[𝑘|𝑘]𝐀𝑇

𝑐 +𝐐𝑐
,

here 𝐀𝑐 and 𝐁𝑐 are defined as in (7) and 𝐐𝑐 is the centralized process
oise covariance matrix.

Let 𝐲 and 𝐂𝑐 be the complete measurement vector and central-
zed observation matrix, respectively, such that 𝐲[𝑘] = 𝐂𝑐𝐱[𝑘]. Let 𝐲 be
omposed of individual agent measurement vectors, such that

∶=
⎡

⎢

⎢

⎣

𝐲1
⋮
𝐲𝑁

⎤

⎥

⎥

⎦

, 𝐂𝑐 ∶=
⎡

⎢

⎢

⎣

𝐂1
⋮
𝐂𝑁

⎤

⎥

⎥

⎦

here 𝐲𝑖 is the measurement vector captured by agent 𝑖, and 𝐂𝑖 is

ts measurement model. For the case of leader agents, 𝐲𝑖 is a position
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easurement and 𝐂𝑖 =
[

⋯ 𝐈3 𝟎3 ⋯
]

. As for follower AUVs,
onsidering the relationship presented in Santos et al. (2021),

̄
𝑖𝑗 (𝑡𝑘)(𝐩𝑖(𝑡𝑘) − 𝐩𝑗 (𝑡𝑘)) = 𝟎3×1,

nd that the AUV has access to depth measurements, the measurement
ector, at time 𝑡 = 𝑡𝑘+1 is then given by

𝑖[𝑘 + 1] =
[

𝟎3|𝑖|×1
𝑧𝑖(𝑡𝑘+1)

]

,

here 𝑧𝑖 is the depth measurement. Each 𝐂𝑖 relates the measure-
ents captured by the 𝑖th agent with the total state vector using the

rthogonal complement of the bearing projection matrix and depth
nformation, as shown below, in Example 2.

The total state estimate is then corrected according to the standard
alman filter update equations

𝐱̂[𝑘 + 1|𝑘 + 1] = 𝐱̂[𝑘 + 1|𝑘] +𝐊(𝐲[𝑘 + 1] − 𝐂𝑐 𝐱̂[𝑘 + 1|𝑘])

𝚺[𝑘 + 1|𝑘 + 1] =
(

𝐈 −𝐊𝐂𝑐
)

𝚺[𝑘 + 1|𝑘]
,

where 𝐊 = 𝚺[𝑘 + 1|𝑘]𝐂𝑇
𝑐
(

𝐂𝑐𝚺[𝑘 + 1|𝑘]𝐂𝑇
𝑐 + 𝐑𝑐

)−1 is the Kalman gain,
7

with 𝐑𝑐 the total observation vector noise covariance matrix.
Example 2. Considering the formation presented in Fig. 1, the obser-
vation matrix of each agent is given by

𝐂1 =
[

𝐈3 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3
]

,

𝐂2 =
⎡

⎢

⎢

⎣

−𝐃̄21 𝟎3 𝐃̄21 𝟎3 𝟎3 𝟎3
𝟎3 𝟎3 𝐃̄23 𝟎3 −𝐃̄23 𝟎3
𝟎1×3 𝟎1×3 𝐞𝑧 𝟎1×3 𝟎1×3 𝟎1×3

⎤

⎥

⎥

⎦

,

3 =
⎡

⎢

⎢

⎣

−𝐃̄31 𝟎3 𝟎3 𝟎3 𝐃̄31 𝟎3
𝟎3 𝟎3 −𝐃̄32 𝟎3 𝐃̄32 𝟎3
𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3 𝐞𝑧 𝟎1×3

⎤

⎥

⎥

⎦

,

here the 𝐃𝑖𝑗 matrices are computed using the quantities obtained at
ime 𝑡 = 𝑡𝑘+1, though the explicit time dependence was omitted due to
pace limitations. The centralized observation matrix is then given by

𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐈3 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3
−𝐃̄21 𝟎3 𝐃̄21 𝟎3 𝟎3 𝟎3
𝟎3 𝟎3 𝐃̄23 𝟎3 −𝐃̄23 𝟎3
𝟎1×3 𝟎1×3 𝐞𝑧 𝟎1×3 𝟎1×3 𝟎1×3
−𝐃̄31 𝟎3 𝟎3 𝟎3 𝐃̄31 𝟎3
𝟎3 𝟎3 −𝐃̄32 𝟎3 𝐃̄32 𝟎3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

⎣
𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3 𝐞𝑧 𝟎1×3⎦
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Fig. 3. Nominal trajectory of the leader agent with index 1.
and the measurement vector, in this example, is given by

𝐲[𝑘 + 1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐲1[𝑘 + 1]
𝟎6×1

𝑧2(𝑡𝑘+1)
𝟎6×1

𝑧3(𝑡𝑘+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝐲1[𝑘+1] is the position measurement obtained by the leader AUV
with index 1 and 𝑧2, 𝑧3 are the depth measurements obtained by agents
2 and 3, respectively.

4.3. Decentralized observer

The algorithm presented in this section is based on a slight extension
of the distributed filter presented in Section 3.2, which allows for
asynchronous updates involving more than two agents at a time, at
the cost of extra communication. Similarly to the DEKF, each agent
carries its own estimated belief, 𝑖 = {𝐱̂𝑖, 𝚺̂𝑖𝑖}, and cross-covariance
factors to other AUVs, 𝚽̂𝑖𝑗 . The prediction equations for these quantities
are performed as in the DEKF. In fact, the only difference between
these two approaches is the update step, which is not restricted to
pairwise communication and uses the projection matrix (16) introduced
in Santos et al. (2021).

The update equations for leader agents are the exact same as in the
DEKF approach, including the cross-covariance factor updates. As for
relative measurements, let a follower agent with index 𝑖 take bearing
measurements about its neighbors, which will be assumed, without
loss of generality, to have indices 𝑗 ∈ 𝑖 = {1,… , |𝑖|}, and a depth
measurement about itself. Since 𝐃̄𝑖𝑗 (𝑡𝑘)(𝐩𝑖(𝑡𝑘) − 𝐩𝑗 (𝑡𝑘)) = 𝟎3×1, then,
considering the joint state vector

𝐱𝑎[𝑘] ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐱𝑖[𝑘]
𝐱1[𝑘]
⋮

𝐱
|𝑖|

[𝑘]

⎤

⎥

⎥

⎥

⎥

⎦

,

where 𝐱𝑖 is the state of the measuring agent, one has

𝐲𝑎[𝑘 + 1] ∶=
[

𝟎3×|𝑖|

𝑧𝑖(𝑡𝑘+1)

]

= 𝐂𝑎𝐱𝑎[𝑘 + 1],

where
8

𝐂𝑎 =
⎡

⎢

⎢

⎢

⎢

⎣

𝐃̄𝑖1 𝟎3×3 −𝐃̄𝑖1 𝟎3×3 ⋯ 𝟎3×3 𝟎3×3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐃̄𝑖|𝑖|
𝟎3×3 𝟎3×3 𝟎3×3 ⋯ −𝐃̄𝑖|𝑖|

𝟎3×3
𝐞𝑇𝑧 𝟎1×3 𝟎1×3 𝟎1×3 ⋯ 𝟎1×3 𝟎1×3

⎤

⎥

⎥

⎥

⎥

⎦

,

and 𝑧𝑖 is the depth measurement of the measuring agent. Note that
the matrices 𝐃̄𝑖𝑗 are, again, computed using the quantities obtained at
time 𝑡 = 𝑡𝑘+1, such that, when computing the update equations, one has
𝐃̄𝑖𝑗 = 𝐃̄𝑖𝑗 (𝑡𝑘+1).

Let the estimate of the joint system’s state, composed of the AUVs
participating in the measurement of agent 𝑖, be denoted as 𝐱̂𝑎, and its
associated covariance matrix estimate as

𝚺̂𝑎𝑎 =

⎡

⎢

⎢

⎢

⎢

⎣

𝚺̂𝑖𝑖 𝚺̂𝑖1 ⋯ 𝚺̂𝑖|𝑖|

𝚺̂1𝑖 𝚺̂11 ⋯ 𝚺̂1|𝑖|

⋮ ⋮ ⋱ ⋮
𝚺̂
|𝑖|𝑖 𝚺̂

|𝑖|1 ⋯ 𝚺̂
|𝑖||𝑖|

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

where the discrete-time dependence was also dropped for readability.
In order to reduce the required amount of communication, the cross-
covariance terms between the neighbors of AUV 𝑖 can be ignored, such
that

𝚺̂𝑎𝑎 ≈

⎡

⎢

⎢

⎢

⎢

⎣

𝚺̂𝑖𝑖 𝚺̂𝑖1 ⋯ 𝚺̂𝑖|𝑖|

𝚺̂1𝑖 𝚺̂11 ⋯ 𝟎3×3
⋮ ⋮ ⋱ ⋮

𝚺̂
|𝑖|𝑖 𝟎3×3 ⋯ 𝚺̂

|𝑖||𝑖|

⎤

⎥

⎥

⎥

⎥

⎦

.

If the communication restrictions are not as strict, the cross-covariance
terms 𝚺̂𝑗𝑘, for 𝑗, 𝑘 ∈ 𝑖, can be obtained from the cross-covariance
factors that the participating agents 𝑗 and 𝑘 carry, by letting them
communicate these quantities to agent 𝑖, which can then reconstruct
the cross-covariance term and place it into 𝚺̂𝑎𝑎. For follower AUVs, the
Kalman gain is computed for the joint system using the reconstructed
covariance matrix, such that

𝐊𝑎 = 𝚺̂𝑎𝑎[𝑘 + 1|𝑘]𝐂𝑇
𝑎

(

𝐂𝑎𝚺̂𝑎𝑎[𝑘 + 1|𝑘]𝐂𝑇
𝑎 + 𝐑𝑎

)−1
,

where 𝐑𝑎 is a compatible measurement noise covariance matrix. The
new beliefs are then computed using the standard Kalman filter update
equations
{

𝐱̂𝑎[𝑘 + 1|𝑘 + 1] = 𝐱̂𝑎[𝑘 + 1|𝑘] +𝐊𝑎(𝐲𝑎[𝑘 + 1] − 𝐂𝑎𝐱̂𝑎[𝑘 + 1|𝑘])
̂ ( ) ̂ ,

𝚺𝑎𝑎[𝑘 + 1|𝑘 + 1] = 𝐈6 −𝐊𝑎𝐂𝑎 𝚺𝑎𝑎[𝑘 + 1|𝑘]
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Fig. 4. Measurement topologies.

nd then communicated to the participating agents. In turn, these
gents update their cross-covariance factors to non-participating ones
ccording to the approximation presented in Luft et al. (2018), i.e.,

̂
𝑖𝑘[𝑘 + 1|𝑘 + 1] = 𝚺̂𝑎𝑎[𝑘 + 1|𝑘 + 1]𝚺̂−1

𝑎𝑎 [𝑘 + 1|𝑘]𝚽̂𝑖𝑘[𝑘 + 1|𝑘],

for every non-participating agent with index 𝑘 that they have knowl-
edge of. In case the full covariance matrix was used, the new cross-
covariance terms between the participating agents can be factorized
and distributed in a way that does not double-count information. A
9

𝚺

possible rule for distributing the cross-covariance terms could be, for
example

𝚽̂𝑖𝑗 [𝑘 + 1|𝑘 + 1] =

{

𝚺̂𝑖𝑗 [𝑘 + 1] if 𝑖 < 𝑗

𝐈6 if 𝑖 > 𝑗
,

hough it is not necessarily the one which minimizes the amount of
ommunication.

.4. Static-gain decentralized observer

In this section, a technique for computing steady-state observer
ains for agents that can acquire relative position measurements to
heir neighbors, presented in Viegas et al. (2018), is briefly described.
ocal observers for each follower agent are then designed, coupling
hese gains with an artificial relative position output built from bearing
easurements and depth differences between agents. Each observer has
prediction step and an update step, as with regular Kalman filters,

hough a covariance matrix is not maintained.
All agents predict their estimate according to

̂ 𝑖[𝑘 + 1|𝑘] = 𝐀𝐱̂𝑖[𝑘|𝑘] + 𝐁𝐮𝑖[𝑘],

here 𝐀, 𝐁, and 𝐮𝑖[𝑘] are defined as in (4), (5), and (2), respec-
ively. Upon taking measurements and predicting its state, the 𝑖th agent
pdates its estimate according to

̂ 𝑖[𝑘 + 1|𝑘 + 1] =

{

𝐱̂𝑖[𝑘 + 1|𝑘] +𝐊𝑖(𝐲𝑖[𝑘 + 1] − 𝐱̂𝑖[𝑘 + 1|𝑘]) if 𝑖 ∈ 𝐿

𝐱̂𝑖[𝑘 + 1|𝑘] +𝐊𝑖(𝐦𝑖[𝑘 + 1] − 𝛥𝐱̂[𝑘 + 1|𝑘]) if 𝑖 ∈ 𝐹
,

here

𝐱̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱̂𝑖[𝑘 + 1|𝑘] − 𝐱̂1[𝑘 + 1|𝑘]
⋮

𝐱̂𝑖[𝑘 + 1|𝑘] − 𝐱̂
|𝑖|

[𝑘 + 1|𝑘]
𝐩̂𝑧𝑖 (𝑡𝑘+1|𝑡𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑖[𝑘 + 1] is an absolute position measurement, and 𝐦𝑖[𝑘 + 1] is a vec-
or containing the captured depth measurement and relative position
easurements between the measuring agent and its neighbors, assumed

o be 𝑖 = {1,… , |𝑖|}. The formation gains, 𝐊𝑖, are computed by
ropagating the centralized system’s covariance prediction and update
quations using a gain matrix computed subject to a certain sparsity
onstraint, which, in this case, constrains the total system gain matrix,
, to be block diagonal. Upon computing the formation gains, each
lock of 𝐊 is extracted and set as 𝐊𝑖 accordingly.

The centralized system’s motion model is identical to that of the
EKF, presented in Section 3.1.1, such that 𝐀𝑐 = 𝐈𝑁 ⊗ 𝐀. As for the
bservation model, whereas leader agents can capture measurements of
heir own position, follower agents can only capture relative position
nd depth measurements, that is

𝑖[𝑘 + 1] =

⎡

⎢

⎢

⎢

⎢

⎣

𝐩𝑖(𝑡𝑘+1) − 𝐩1(𝑡𝑘+1)
⋮

𝐩𝑖(𝑡𝑘+1) − 𝐩
|𝑖|

(𝑡𝑘+1)
𝑧𝑖(𝑡𝑘+1)

⎤

⎥

⎥

⎥

⎥

⎦

.

et 𝐂𝑐 be centralized system’s observation matrix, containing matrices
𝐿 =

[

𝐈3 𝟎3
]

for leader measurement entries. For follower mea-
urement entries, the measuring agent’s entry is modeled with 𝐂𝐿,
hereas the entry corresponding to the agent whose measurement is

aken about is modeled with −𝐂𝐿. Additionally, the depth measure-
ents taken by follower agents are modeled using the vector 𝐞𝑧 =
0 0 1 0 0 0

]

. This construction is exemplified in Example 3.
Following the results derived in Viegas et al. (2018), the centralized

ain subject to a sparsity constraint is then computed by propagating

[𝑘 + 1|𝑘] = 𝐀𝑐𝚺[𝑘|𝑘]𝐀𝑇
𝑐 +𝐐𝑐 (18)

nd
𝑇
[𝑘 + 1|𝑘 + 1] = (𝐈6𝑁 −𝐊[𝑘]𝐂𝑐 )𝚺[𝑘 + 1|𝑘](𝐈6𝑁 −𝐊[𝑘]𝐂𝑐 )
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Fig. 5. RMSE results.
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+ 𝐊[𝑘]𝐑𝑐𝐊[𝑘]𝑇 (19)

until the trace of 𝚺[𝑘 + 1|𝑘 + 1] reaches a steady-state value. Define
𝐥𝑖 ∈ R6𝑁 as the unit vector such that all entries are zero except the 𝑖th
one and let 𝐋𝑖 ∶= diag(𝐥𝑖). In the above equations, 𝐐𝑐 = diag(𝐐1,… ,𝐐𝑁 )
is the centralized process noise covariance matrix, 𝐑𝑐 is the centralized
observation model noise covariance matrix, and 𝐊[𝑘] is given by

𝐊[𝑘] =
6𝑁
∑

𝑖=1
𝐋𝑖𝚺[𝑘 + 1|𝑘]𝐂𝑇

𝑐 𝐌𝑖
(

𝐈6𝑁 −𝐌𝑖 +𝐌𝑖𝐒𝐌𝑖
)−1 ,

where

𝐒 = 𝐂𝑐𝚺[𝑘 + 1|𝑘]𝐂𝑇
𝑐 + 𝐑𝑐 .

The sparsity constraint is imposed by the matrix 𝐌𝑖, which is built
to encode the measurements each agent has access to. Letting 𝐬𝑖 be a
vector such that
{

𝐬𝑗𝑖 = 1 if 𝐄𝑖𝑗 = 1

𝐬𝑗𝑖 = 0 otherwise
,

where 𝐄 ∈ R6𝑁×𝑚 is the sparsity pattern matrix, with 𝑚 the total
measurement vector length, 𝐌𝑖 is then built as 𝐌𝑖 = diag(𝐬𝑖).

Example 3. Consider again the formation presented in Fig. 1. Follow-
10

ing the measurement ordering adopted in Example 2, the centralized
observation matrix, 𝐂𝑐 , is given by

𝐂𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐂𝐿 𝟎3×6 𝟎3×6
−𝐂𝐿 𝐂𝐿 𝟎3×6
𝟎1×6 𝐞𝑧 𝟎1×6
−𝐂𝐿 𝟎3×6 𝐂𝐿
𝟎3×6 −𝐂𝐿 𝐂𝐿
𝟎1×6 𝟎1×6 𝐞𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

nd the sparsity pattern matrix is defined as

=
⎡

⎢

⎢

⎣

𝟏6×3 𝟎6×7 𝟎6×7
𝟎6×3 𝟏6×7 𝟎6×7
𝟎6×3 𝟎6×7 𝟏6×7

⎤

⎥

⎥

⎦

,

here 𝟏𝑝×𝑞 ∈ R𝑝×𝑞 is a 𝑝 by 𝑞 matrix filled with ones. The sparsity
atrix defines that AUV 1 has access to the first 3 entries of the total
easurement vector, agent 2 to the following 7 entries, and agent 3 has

ccess to the remaining ones. Note that, upon setting a measurement
rdering for the centralized observation matrix, that same ordering
ust be kept when building the measurement vector of each agent.

Consider the vector 𝐲𝑖𝑗 (𝑡𝑘) ∶=
[

𝟎1×3 𝑧𝑖(𝑡𝑘) − 𝑧𝑗 (𝑡𝑘)
]𝑇 , where 𝑧𝑖 and

𝑗 are the depth measurements obtained by AUVs with indices 𝑖 and 𝑗,
espectively. Let 𝚫𝑖𝑗 (𝑡𝑘) = 𝐩𝑖(𝑡𝑘) − 𝐩𝑗 (𝑡𝑘) and

𝑖𝑗 (𝑡𝑘) =
[

𝐃̄𝑖𝑗 (𝑡𝑘)
]

,

0 0 1
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Fig. 6. RMSE results of algorithms tuned for steady-state performance.
with 𝐃̄𝑖𝑗 defined as in (16). One then has that

𝐏𝑖𝑗 (𝑡𝑘)𝚫𝑖𝑗 (𝑡𝑘) = 𝐲𝑖𝑗 (𝑡𝑘),

from which it is possible to recover 𝚫𝑖𝑗 (𝑡𝑘) as

𝚫𝑖𝑗 (𝑡𝑘) =
(

𝐏𝑇
𝑖𝑗 (𝑡𝑘)𝐏𝑖𝑗 (𝑡𝑘)

)−1
𝐏𝑇
𝑖𝑗 (𝑡𝑘)𝐲𝑖𝑗 (𝑡𝑘),

provided that 𝐏𝑇
𝑖𝑗 (𝑡𝑘)𝐏𝑖𝑗 (𝑡𝑘) is invertible, which is the case if 𝑧𝑖(𝑡𝑘) −

𝑧𝑗 (𝑡𝑘) ≠ 0.
Rather than actual relative position measurements, the vector en-

tries, 𝐦𝑖𝑗 ∈ R3, of 𝐦𝑖, are instead taken as

𝐦𝑖𝑗 [𝑘 + 1] = 𝛼𝑖𝑗𝚫𝑖𝑗 (𝑡𝑘+1) + (1 − 𝛼𝑖𝑗 )𝐃𝑖𝑗 (𝑡𝑘+1)(𝐩̂𝑖(𝑡𝑘+1|𝑡𝑘) − 𝐩̂𝑗 (𝑡𝑘+1|𝑡𝑘)),

with 𝐃𝑖𝑗 defined in (15). Each artificial relative position measurement
is given by a weighted sum of the extracted position difference, 𝚫𝑖𝑗 ,
and the projection of its current prediction, 𝐃𝑖𝑗 (𝐩̂𝑖 − 𝐩̂𝑗 ), with 𝐩̂𝑖 and 𝐩̂𝑗
extracted from 𝐱̂𝑖[𝑘+1|𝑘] and 𝐱̂𝑗 [𝑘+1|𝑘], respectively. This projection is
done using 𝐃𝑖𝑗 (𝑡𝑘+1), which is constructed using the measured bearing
angles via 𝐝𝑖𝑗 (𝑡𝑘+1), according to (6) and (15). Since the matrix 𝐏𝑇

𝑖𝑗𝐏𝑖𝑗
becomes close to singular if the height difference between the agents
is close to zero, causing numerical instability, the weights are chosen
as 𝛼𝑖𝑗 = |𝐝𝑧𝑖𝑗 (𝑡𝑘+1)|. This ensures that when the extracted position
difference, 𝚫𝑖𝑗 , is unreliable, the bearing measurement information can
11

still be used.
5. Simulation results

5.1. Setup

The setup considered for simulation analysis consists of a set of 10
AUVs performing a mission, whereby the agents must visit a set of
waypoints while maintaining a certain formation. The agents start with
the spatial distribution presented in Fig. 2(a), and maintain this forma-
tion for a portion of their mission. Then, they change to a different
spatial distribution, as represented in Fig. 2(b). They accomplish this
by stopping until all have reached their waypoints, and then moving
towards their next location in the formation until they reach it. Once
all agents are in their respective locations, they move on to the next
waypoint. Fig. 3 shows the nominal trajectory of agent 1.

The fluid velocity, 𝐯𝑓𝑖 =
[

0.1 −0.2 0
]𝑇 (m s−1), was assumed to

be constant throughout the whole operating space for all 𝑖 ∈  , where
 is the set of AUVs. The relative velocity of each agent, 𝐯𝑟𝑖 (𝑡), is
available at a rate of 50Hz and is corrupted by additive zero mean
white Gaussian noise, with covariance matrix 𝚺𝑢 = 0.012𝐈3. The agents
have access to their orientation, parameterized by its roll, pitch, and
yaw Euler angles. These are also corrupted by independent additive
zero-mean white Gaussian noise, with standard deviation of 0.05° for

the roll and pitch angles, and 0.3° for the yaw angle. The control signal
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Fig. 7. Mean 𝐩𝑥3 estimation error of observers tuned for steady-state performance.
of each agent, 𝐮𝑖[𝑘], is obtained using the trapezoidal integration rule
of 𝐑𝑖(𝑡)𝐯𝑟𝑖 (𝑡) between measurement time steps, approximating (2).

The AUVs capture measurements every 𝑇 = 1 s. Leaders obtain
measurements of their position corrupted by additive zero mean white
Gaussian noise, with covariance matrix 𝚺pos = 0.12𝐈3, and the depth
measurements of the follower AUVs are corrupted by additive zero
mean white Gaussian noise, with standard deviation of 0.1m. The
measured bearing angles, 𝜃 and 𝜙, captured in the measuring agent’s
body frame, are corrupted by additive independent zero mean Gaussian
noise, with standard deviation of 1°.

The process noise covariance matrix of each AUV is given by 𝐐𝑖 =
diag

(

0.052𝐈3, 0.0052𝐈3
)

. The measurement noise covariance matrix for
absolute position measurements is given by 𝐑pos = 0.12𝐈3, and the noise
corrupting depth measurements is modeled with a standard deviation
of 𝜎𝑑 = 0.1m. All agents are assumed to be completely uncorrelated
at time 𝑡 = 0, such that all the cross-covariance matrices and factors
between agents are equal to the zero matrix, 𝟎6. In order to compute
the steady-state gains for the static gain observer, (18) and (19) were
propagated until | tr (𝚺[𝑘 + 1|𝑘 + 1]) − tr (𝚺[𝑘|𝑘]) | < 0.001, where tr(⋅)
is the trace operator. The observers will be studied using two separate
sets of tuning parameters, one tuned for convergence, and the other for
12

t

steady-state behavior. The remaining filter parameters will be specified
in each case.

The considered measurement topologies are presented in Figs. 4(a)
and 4(b). The agents are organized by tiers, such that 0 = {1, 2} = 𝐿,
1 = {3, 4, 5, 6}, and 2 = {7, 8, 9, 10} are the sets of agents in tiers 0,
1, and 2, respectively. Note that there are two leaders, agents 1 and 2,
and they both are at the top of the formation, in tier 0. The cycles were
made by flipping some of the edges (highlighted in green in Fig. 4(b))
between tiers 1 and 2 in the acyclical topology, and by introducing the
blue edges around each tier of agents.

In order to evaluate the transient response and the steady-state
performance of the presented estimators, the algorithms were imple-
mented on each agent and 𝑁 = 500 runs of the mission were simulated.
The root-mean-squared-error (RMSE) of the position and fluid velocity
estimates, obtained for each time instant from the collection of Monte
Carlo runs, was then computed, such that

RMSE(𝐱[𝑘]) =

√

∑𝑁
𝑛=1 ‖𝐱[𝑘] − 𝐱̂𝑛[𝑘]‖2

𝑁
,

where 𝐱[𝑘] is the concatenation of the state vectors of all AUVs at
ime 𝑘, and 𝐱̂𝑛[𝑘] is its estimate obtained in the 𝑛th Monte Carlo run.
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Fig. 8. Mean 𝐩𝑥9 estimation error of observers tuned for steady-state performance.
Additionally, in order to investigate whether the estimators are biased,
the mean error of the estimated quantities, for each time instant, was
computed from the collection of Monte Carlo runs, as given by

mean(𝐱[𝑘]) = 1
𝑁

𝑁
∑

𝑛=1
𝐱[𝑘] − 𝐱̂𝑛[𝑘].

.2. Results

Due to the specific tuning parameters used in order to achieve good
teady-state performance, the algorithms can take a while to converge.
n order to improve the convergence time of these solutions, separate
uning parameters can be used, depending on the phase of the mission.
nitially, if the agents are completely unlocalized, they can adopt a
ertain set of tuning parameters optimized for convergence speed. After
certain amount of time, they can change to parameters optimized

or steady-state performance. These parameters were set empirically,
s is the case with most nonlinear estimation problems. Taking this
nto account, the convergence of the algorithms was studied separately
rom their steady-state performance. Firstly, the convergence behavior
f the presented solutions is studied. Then, the steady-state behavior is
13

nalyzed by considering small initial estimation errors.
5.2.1. Convergence analysis
For the EKF-based approaches, the initial state estimate for each

of the Monte Carlo runs was sampled from a Gaussian distribution
with mean identical to the true value and with covariance matrix
𝚺0 = diag(102𝐈3, 𝐈3), whereas for the remaining ones the initial state
estimates were sampled from a Gaussian distribution with covariance
matrix 𝚺0 = diag(2502𝐈3, 502𝐈3) and mean identical to the true value.
The initial state covariance matrix of each agent was likewise set as
𝚺𝑖𝑖[0|0] = diag(502𝐈3, 102𝐈3) and the noise affecting the relative measure-
ment between AUVs is modeled with the covariance matrix 𝐑𝑏 = 0.012𝐈2
for EKF-based approaches, and 𝐑𝑏 = 0.52𝐈3 for the remaining ones.
The initial 400 seconds of the full mission were simulated 𝑁 = 500
times, with the specified simulation and tuning parameters, considering
independent noise vectors for each run.

It is well known that EKF-based approaches do not guarantee global
convergence and require relatively accurate initial state estimates. How
accurate these initial estimates must be depends on both the spatial
distribution of the agents in the formation, as well as their measurement
topology. The number of convergent runs, under each topology, for
both the CEKF and DEKF, are presented in Table 1. Similar results

were obtained for different formation configurations, and show that the
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Fig. 9. Mean 𝐯𝑥𝑓3 estimation error of observers tuned for steady-state performance.
Table 1
Number of convergent runs (and respective convergence percentage) for
each EKF-based estimator under the acyclical and cyclical measurement
topologies.

Acyclical Cyclical

CEKF 443 (88.6%) 448 (89.6%)
DEKF 463 (92.6%) 487 (97.4%)

centralized approach is more sensitive to the initial conditions of the
agent configuration than its decentralized counterpart, emphasizing the
inherent robustness of decentralized approaches. Since the CEKF shares
more information, its estimates are also more affected by erroneous
initial state estimates, hence the added difficulty in converging. As for
the linear estimators, their estimates converged to the true solution on
all runs. The RMSE of the convergent estimates obtained by each of the
considered estimators, for both measurement topologies, is presented in
Figs. 5(a) and 5(b).

In these figures, besides the CEKF and DEKF, the other approaches
are labeled as follows. The approach presented in Section 4.1 is labeled
14

as IKF; the centralized Kalman filter approach, presented in 4.2, is
labeled as CKF; and the two variants of its decentralized counterpart,
presented in Section 4.3, are labeled as DKF-FCS and DKF-PCS. DKF-
FCS reproduces the whole joint covariance matrix (17), whereas DKF-
PCS keeps communication to a minimum and does not fill the entries
corresponding to cross-covariances between neighbors of the measuring
agent. Lastly, the static-gain observer presented in Section 4.4 is labeled
as SLTI.

As shown in Fig. 5(a), all the linear observers, except SLTI, pro-
duced estimates that converged to the true solution in just a few
time-steps when the measurement topology is acyclical. SLTI does not
achieve this because it is a static-gain observer designed for steady-
state performance, which typically involves low gains, thus the slow
convergence.

Upon introduction of new edges to form cycles, the convergence
speed of the IKF is severely affected, as shown in Fig. 5(b). This
is related to the fact that each agent following this observer design
produces its estimates independently of the other AUVs, disregarding
possible cross-measurement information. The other linear time-varying
Kalman filter approaches, however, converge to the solution unaffected
by the presence of cycles in the measurement graph. Similarly, the con-
vergence speed of the SLTI is only slightly affected by the introduction
of these edges.
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.2.2. Steady-state performance
Here, the RMSE of the estimates obtained with each estimator,

uned for steady-state performance, is compared. Since the observers
ere optimized for steady-state performance, their convergence is quite

low. Thus, the initial state estimates were set very close to their real
alue by sampling them from a Gaussian distribution, centered at the
eal state vectors and with covariance matrix 𝚺0 = diag(0.052𝐈3, 0.012𝐈3).

The initial covariance matrix of each agent was set as 𝚺𝑖𝑖[0|0] = 𝚺0 and
he artificial measurements’ covariance matrix was set as 𝐑𝑏 = 0.32𝐈2
or the EKF-based estimators, and 𝐑𝑏 = 32𝐈3 for the remaining ones.
he RMSE results for the acyclical topology are presented in Fig. 6(a),
nd for the cyclical measurement topology in Fig. 6(b).

The IKF has the worst performance of the considered estimators. As
entioned before, this is because the IKF keeps no cross-measurement

nformation, whereas all the other estimators do some way or the other.
lso, contrary to what one would expect, the CKF does not have the
est performance out of the estimators in its class, which is due to the
resence of a non-zero error bias in the artificial quantities built from
he bearing angles. Indeed, the expected value of the direction vector,
uilt according to (6), considering noisy measurements, is not equal
o the nominal direction vector built from noiseless bearing angles.
15

ince the centralized approaches make use of more information to m
roduce their estimates and, in this case, fail to account for biased
rrors, this additional information ends up being detrimental to the
ilter’s performance, depending on the tuning parameters. The CEKF
nd the DEKF have the best performance, which is because they use the
earing angles directly (after rotation to the inertial frame), unlike the
ther algorithms, and thus are not affected by the measurement error
ias originating from the construction of the direction vector. Note,
owever, that rotating the bearing angles to the inertial frame can still
esult in the introduction of a bias into the estimation error due to the
oisy attitude measurements, resulting in the DEKF presenting better
stimation capabilities than the CEKF.

The introduction of cycles was detrimental to the performance of the
KF, which, again, is due the fact that it keeps no cross-measurement
nformation, and thus the estimation errors are re-fed to the estimation
lgorithm with no regard for where they originated from, resulting
n difficulties in converging and higher RMSE. SLTI has also seen its
erformance severely decreased. However, this is due to the fact that
he blue edges concern agents which are at the same height, and, as
entioned before, the matrices 𝐏𝑖𝑗 become singular when this happens,

esulting in numerical instability. The CEKF and DEKF have benefited
rom the introduction of cycles, since their RMSE is lower. Likewise,
he other estimators, CKF, DKF-FCS, and DKF-PCS, saw their perfor-
ance slightly improved. The introduction of new edges and cycles
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has allowed the algorithms to work with more information and create
better correlation between the agents. However, the biasing errors for
CKF, DKF-FCS, and DKF-PCS, make it so fine-tuning is still required in
order to balance measurement information with the amount of biasing
error, which depends on both the measurement topology and spatial
formation.

In the following, the presence of a non-zero estimation error bias
is investigated. For that effect, the mean results for the 𝑥 coordinate
of the estimated positions and fluid velocities of AUVs 3 and 9 are
presented in Figs. 7 to 10. Regardless of the measurement topology,
there is a clear non-zero estimation error bias for the linear estimators,
though it is very small given these parameters, and the estimators
still provide a good enough estimate for most purposes. This bias is
dependent on the spatial formation of the agent, and comes mostly
from the construction of the artificial direction vectors, 𝐝𝑖𝑗 . Since the
EKF-based approaches use the bearing angles directly (after rotation
to the inertial frame), the noise affecting the measurement vector of
these approaches is closer to a normally distributed noise than the one
affecting the other approaches, hence there is no noticeable bias in
these approaches’ results. As for the fluid velocity, there is no clear
estimation error bias, though there is no guarantee that there will
not be one, since the control input, 𝐮[𝑘], is computed using the noisy
rotation matrix.

5.2.3. Further comments
While no results were presented for sampling times other than

𝑇 = 1 s, or for sensor failure events, some comments can be made
regarding their effects on the generated navigation estimates. A smaller
sampling time will allow the system to receive more information, which
will reduce its convergence time, and, in the case of the EKF-based
approaches, will make them less sensitive to the initial estimation
error. However, the attitude measurements captured by the AUVs are
corrupted by attitude noise, and these are then used to create the
prediction estimate. Given the same tuning parameters, due to the
system having a lower sampling time and thus receiving more informa-
tion, which might be affected by a biased error, this extra information
might end up pushing the system’s estimates away from the true value.
Regardless, by adjusting the tuning parameters to the sampling time,
it is possible to produce better estimates than with a higher sampling
time.

Regarding sensor failures, these can be events where no data is
captured by an agent, as well as events where outlier data is exchanged.
There exist several alternatives for dealing with this problem, such as
the one presented in Navon and Bobrovsky (2021), though these are
out of the scope of this paper. Regardless, solutions based on artificial
measurements have a major advantage when compared to the EKF-
based ones when it comes to total sensor failure, that is, events where
the AUV receives no measurement information. Since the former type
of solutions can be guaranteed to converge for acyclical formations, the
frequency of sensor failure can be arbitrarily high and the generated
estimate will still eventually converge to a neighborhood of the true
state of the system. However, EKF-based solutions are not guaranteed to
converge, and thus can be very sensitive to sensor failures, especially if
those cause outlier data to be exchanged between agents without being
filtered out. Given a high enough frequency of these events, EKF-based
solutions might even diverge.

As a final note on computational complexity: centralized approaches
scale, in general with the square of the total number of agents. As
an example, a centralized approach implemented for a team of 20
agents will require a central location, or in some implementations,
every single AUV, to carry and perform inversion operations involving
a covariance matrix 𝚺[𝑘] ∈ R120×120, which has a total of 14400
entries. By comparison, in decentralized approaches, the computational
complexity scales differently for each agent and is dependent on the
measurement topology, scaling instead with the square of number of
16

neighbors at each agent. This, in general, does not scale with the total
number of agents and is usually a small number. Additionally, the
larger the number of AUVs, the more robust the communication links
have to be, since any link failure will lead to missing inputs in the
prediction and update steps.

6. Conclusion

In this study, both centralized and decentralized cooperative naviga-
tion techniques were described and evaluated. Centralized approaches
require all data to be manipulated at a single location, which makes
these approaches unfeasible in practice. Due to the distance between
agents and the fact that communication underwater is very limited, not
only in range, but also in latency, it is very hard, if not impossible, to
gather all measurements at a single location with full synchronicity.
Decentralized solutions do not suffer from this problem, making them
superior to centralized approaches when the communication links are
fragile. Taking into account the additional computational complexity
and communication requirements discussed in the previous section, it
is then possible to conclude that, in most cases, the potential gain
in performance obtained from using a centralized approach does not
outweigh the additional difficulties in implementing it when compared
with a decentralized approach.

The EKF-based approaches were compared with artificial mea-
surement based ones, under both acyclical and cyclical measurement
topologies. While the latter approaches, which are based on linear
measurements, present better convergence qualities when compared to
EKF-based ones, this comes at the cost of changing the noise charac-
teristics of the measurement error vector, which prevents Kalman filter
implementations from providing unbiased estimates, worsening their
performance. As such, a combination of both these types of approaches
should be considered, whereby an artificial measurement based filter
can be used at the start of the mission, switching to and EKF-based
approach when sufficiently good navigation performance has been
achieved. In both the convergence and steady-state analysis of the
algorithms, the decentralized approaches outperformed the centralized
ones.
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