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Summary

The main contributions of this paper are the design of a decentralized controller and
state estimator for linear time-periodic systems with fixed network topologies. The
proposed method to tackle both problems consists of reformulating the linear peri-
odic dynamics as a linear time-invariant system by applying a time-lifting technique
and designing a discrete-time decentralized controller and state estimator for the
time-lifted formulation. The problem of designing the decentralized estimator is for-
mulated as a discrete-time Kalman filter subject to sparsity constraints on the gains.
Two different algorithms for the computation of steady-state observer gains are tested
and compared. The control problem is posed as a state feedback gain optimization
problem over an infinite-horizon quadratic cost, subject to a sparsity constraint on the
gains. An equivalent formulation that consists in the optimization of the steady-state
solution of a matrix difference equation is presented and an algorithm for the compu-
tation of the decentralized gain is detailed. Simulation results for the practical cases
of the quadruple-tank process and an extended forty-tank process are presented that
illustrate the performance of the proposed solutions, complemented with numerical
simulations using the Monte Carlo method.
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1 INTRODUCTION

The study of linear time-periodic (LTP) systems [1] is of paramount importance since many systems cannot be accurately
described by linear time-invariant (LTI) dynamics. This can be seen, for example, in rotating systems [2] [3] or multirate systems
[4], where sensors have different sampling rates. This class of systems is also quite significant in the study of nonlinear systems
since linearizing nonlinear dynamics about periodic state trajectories leads to LTP systems. A classic example of this are the
dynamics of a satellite when linearized about its orbit [5].
While many systems can be modelled by LTP dynamics, the literature available for this specific type of system in what

concerns state estimation is limited. Some centralized observers for LTP systems have been studied, such as in [1] and [6].
However, this centralized approach may lead to robustness problems due to the reliance on a central processing node. Besides,
as networks grow larger, communication and computational loads impose severe bottlenecks. Decentralized observers, while
more difficult to design and analyse, provide a solution to the problems of robustness and scalability.
The topic of decentralized state estimation has received much attention. However, most solutions focus on LTI systems or

nonlinear systems. Nonetheless, many interesting solutions have been proposed following the Kalman filtering approach, ranging
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from the more classic hierarchical structures [7] to fully decentralized approaches, such as the ones found in [8], [9], [10],
and [11]. For nonlinear filters, the most common solution comes in the form of extended Kalman filters and some valuable
contributions can be seen in [12] and [13]. Other decentralized solutions, which do not follow the Kalman filtering scheme, have
also been proposed, such as particle filters [12] and H∞ filters [14] [15]. However, these approaches lead to computationally
heavy algorithms.
In contrast to the problem of decentralized state estimation for LTP systems, decentralized control [16, 17] is a well-established

area, in which a more significant body of research is available. A well-known approach to this problem, and the one used in this
paper, is the design of periodic controllers based on a time-invariant reformulation of the periodic dynamics, known as time-
lifting. Some examples of this, designed specifically with multi-rate systems in mind, can be seen in [18] and [19]. Another
valuable contribution to this topic can be seen in [20], where the authors provide a method of synthesizing periodic controllers
for generic LTP systems. Nevertheless, other solutions that do not make use of the lifted dynamics have been proposed. A
notable method is the use of model predictive control, some examples of which can be seen in [21] and [22]. Some other
interesting solutions can be seen in [23], where the authors use linear matrix inequalities to solve the problem with guaranteed
H∞ performance, and in [24], where a consensus approach is taken. Notwithstanding, it is important to stress that the problems
of decentralized control and estimation are extremely difficult, see [25] and references therein, and remain open problems. In
fact, even for very simple linear systems, the optimal solution may be nonlinear [26]. Moreover, the distributed control problem
has been shown to be convex if and only if quadratic invariance of the controller set is ensured, see [27].
This paper addresses the problems of decentralized control and state estimation for LTP systems with limited communication

between each component of the system. The topology of the system is fixed and it is modelled using a sparse matrix that describes
the availability of communication channels. The proposed method makes use of the well-known relationship between LTP and
LTI systems, namely the fact that a LTP system is invariant when described over a full period. Alluding to this property, it is
possible to reformulate a LTP system as a LTI system, such as described in [28] and [29]. The technique adopted in this paper is
called time-lifting, where the system dynamics over one period are condensed into augmented vectors and matrices that describe
the dynamics of the LTP system in a time-invariant fashion. The advantage of using this approach is that it allows the use of
algorithms that have been previously developed specifically for LTI systems. The algorithms used to design the observer are
the one-step and the finite-horizon methods, introduced in [9], whereas the controller is designed using the one-step method
described in [30]. The one-step and finite-horizon algorithms for state estimation solve the problem of Kalman filtering subject to
sparsity constraints by approximating the steady-state behaviour, which can be solved in closed-form, leading to computationally
efficient and well-performing solutions. Note, however, that the proposed solution is suboptimal, since the one-step method
provides the optimal solution for a convex relaxation of the original optimization problem, not the actual problem. The one-step
method for control seeks to obtain well-performing steady-state gains by optimizing the solution of a matrix difference equation,
which is obtained by reformulating the infinite-horizon quadratic cost function. Likewise, the control solution proposed in this
paper is also suboptimal. The goodness of the proposed solutions is supported by simulation results for two cases: a randomly
generated system, and a system of four interconnected water tanks, known as the quadruple-tank process [31] (QTP), operating
about periodic state trajectories. For both cases, Monte Carlo runs are used to evaluate the performance of the estimator. The
simulation results are further expanded for a system ofN interconnected water tanks, henceforth known as theN-tank process.
Notably, the system of interconnected tanks, operating about periodic state trajectories, is an example of a nonlinear system that
can be tackled resorting to the class of LTP system when its dynamics are linearized about the periodic state trajectories.
The paper is organized as follows. Section 2 formally introduces the problems to be solved. Section 3 describes the time-

lifting procedure. In Section 4, the one-step and finite-horizon methods for computing the observer gains for a LTP system are
introduced, and a simple example using a randomly generated system is showcased. Section 5 describes the one-step method for
computing steady-state feedback control gains. Section 6 details the application of this framework to the QTP, with simulation
results to assess the performance. Section 7 extends the simulation results for theN-tank process. Finally, Section 8 summarizes
the main results and conclusions of the paper.

1.1 Notation
A block diagonal matrix A with n blocks A1, A2, …, An is denoted by A=diag(A1,A2,…,An). The transpose of a matrix or
vector is denoted by (.)T . For simplicity of notation, a signal at step k is defined as v(k)=vk. The trace of a matrix A is denoted
by tr(A).
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2 PROBLEM STATEMENT

Let T >1∈ℕ be the period of a LTP system. The dynamics of said system can be compactly described in state-space form by
{

xk+1=Akxk+Bkuk+wk

yk=Ckxk+vk
, (1)

where xk∈ℝn is the state, uk∈ℝm is the input, yk∈ℝp is the output, and wk∈ℝn and vk∈ℝp are the process and observation
noises, respectively. These are assumed to be independent zero-mean white Gaussian processes with associated covariance
matricesQ⪰0 andR≻0, respectively.Ak∈ℝn×n, Bk∈ℝn×m, andCk∈ℝp×n are time-varying periodic matrices, such thatAk+T =
Ak, Bk+T =Bk, and Ck+T =Ck for all k=0,1,2,…

2.1 Decentralized estimation of LTP systems
Consider the sparsity pattern E and denote the Kalman filter gain by Kk. The set of gains that follow this sparsity pattern is
defined by

Sparse(E)={Kk∈ℝn×p∶[E]ij=0 ⇐⇒ [Kk]ij=0, i=1,...,n,j=1,...,p} .

Like in the centralized Kalman filter, the state estimate is obtained through prediction and filtering. The prediction step is
given by

x̂k+1|k=Akx̂k|k+Bkuk , (2)
where x̂k+1|k denotes the predicted estimate at step k+1. The predicted error covariance Pk+1|k=E{(xk+1−x̂k+1|k)(xk+1−
x̂k+1|k)T }⪰0 at step k+1 is given by

Pk+1|k=AkPk|kAT
k +Q . (3)

The filtered estimate x̂k+1|k+1 is given by

x̂k+1|k+1=x̂k+1|k+Kk+1(yk+1−Ck+1x̂k+1|k) (4)

and the updated error covariance Pk+1|k+1=E{(xk+1−x̂k+1|k+1)(xk+1−x̂k+1|k+1)T }⪰0 follows

Pk+1|k+1=Kk+1RKT
k+1+(I−Kk+1Ck+1)Pk+1|k(I−Kk+1Ck+1)T . (5)

The problem of designing a Kalman filter subject to sparsity constraints for a finite-timewindowW can be formulated as follows.
Given a sparsity pattern E and an initial state estimate x̂0|0, with error covariance P0|0⪰0, solve the optimization problem

minimize
Ki,i=1,...,W

W
∑

k=1
tr(Pk|k)

subject to Ki∈Sparse(E),i=1,2,…,W .

(6)

Notice that W can be made arbitrarily large, as long as it is a multiple of the period T , and its choice depends on the system
model. More complex systems require a larger window size to achieve steady-state performance. Throughout the paper, the
following assumption is made.

Assumption 1. The decentralized state observer is stabilizable, that is, there exists a set of gainsKi∈Sparse(E),i=1,…,T , such
that, in the absence of noise, the state estimate x̂k|k converges globally exponentially fast to the state xk.

2.2 Decentralized control of LTP systems
The decentralized control problem for LTP systems can be described as follows. Consider the LTP system

xk+1=Akxk+Bkuk (7)

and the set of controller gains Kk∈ℝm×n, which follows the sparsity pattern Ec∈ℝm×n defined by

Sparse(Ec)={Kk∈ℝm×n∶[Ec]ij=0 ⇐⇒ [Kk]ij=0, i=1,...,m,j=1,...,n} .
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The goal is to compute a feedback control law for (7), subject to a sparsity constraint, of the form

uk=−Kkxk,Kk∈Sparse(Ec), (8)

which minimizes the infinite-horizon quadratic cost function

J=
+∞
∑

k=0
(xTkQxk+uTkRuk), (9)

where Q⪰0 and R≻0. The stabilization problem is not studied in this paper, as it has been addressed in other works, such as in
[19] and [20]. In the same vein, controllability (and observability) analysis for LTP systems can be found in [1]. In this paper,
the following assumption is made.

Assumption 2. There exists a set of stabilizing decentralized gains for (7), that is, there exists a set of gainsKi∈Sparse(Ec),i=
1,…,T , such that the eigenvalues of the closed-loop matrix (Ak−BkKk) lie inside the unit circle.

3 TIME INVARIANT REFORMULATION

The one-step and finite-horizon methods for computing the observer gains and the one-step method for computing controller
gains proposed in [9] and [30], respectively, apply to LTI systems. In the approach proposed in this paper to tackle LTP systems,
these are first reformulated as LTI systems. To that end, a technique known as time-lifting, based on the work done in [29], is
employed. Consider the LTP system

{

xk+1=Akxk+Bkuk+wk

yk=Ckxk+vk
. (10)

To simplify the presentation, consider that the period of this system is T =3. The state equation can be expanded as follows
x1=A0x0+B0u0+w0,
x2=A1x1+B1u1+w1,
x3=A2x2+B2u2+w2,
x4=A0x3+B0u3+w3,
x5=A1x4+B1u4+w4,
x6=A2x5+B2u5+w5,

and so forth. The periodic system can be regrouped in matrix form as

⎡

⎢

⎢

⎣

x1
x2
x3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 A0
0 0 A1A0
0 0 A2A1A0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0
x0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

B0 0 0
A1B0 B1 0

A2A1B0 A2B1 B2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u0
u1
u2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

I 0 0
A1 I 0

A2A1 A2 I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

w0
w1
w2

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

x4
x5
x6

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 A0
0 0 A1A0
0 0 A2A1A0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1
x2
x3

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

B0 0 0
A1B0 B1 0

A2A1B0 A2B1 B2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u3
u4
u5

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

I 0 0
A1 I 0

A2A1 A2 I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

w3
w4
w5

⎤

⎥

⎥

⎦

,

and so forth. The associated output is given by

⎡

⎢

⎢

⎣

0
0
y0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

C1 0 0
0 C2 0
0 0 C0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0
x0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
0
v0

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

y1
y2
y3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

C1 0 0
0 C2 0
0 0 C0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1
x2
x3

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

v1
v2
v3

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

y4
y5
y6

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

C1 0 0
0 C2 0
0 0 C0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x4
x5
x6

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

v4
v5
v6

⎤

⎥

⎥

⎦

.
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In general, for k≥0,

⎡

⎢

⎢

⎣

xkT+1
xkT+2
xkT+3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 A0
0 0 A1A0
0 0 A2A1A0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x(k−1)T+1
x(k−1)T+2
x(k−1)T+3

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

B0 0 0
A1B0 B1 0

A2A1B0 A2B1 B2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ukT
ukT+1
ukT+2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

I 0 0
A1 I 0

A2A1 A2 I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

wkT
wkT+1
wkT+2

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

ykT+1
ykT+2
ykT+3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

C1 0 0
0 C2 0
0 0 C0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xkT+1
xkT+2
xkT+3

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

vkT+1
vkT+2
vkT+3

⎤

⎥

⎥

⎦

.

This result can be extended to a LTP system with period T . Define the stacked quantities

x̄k=

⎡

⎢

⎢

⎢

⎢

⎣

x(k−1)T+1
x(k−1)T+2

...
x(k−1)T+T

⎤

⎥

⎥

⎥

⎥

⎦

, x̄0=

⎡

⎢

⎢

⎢

⎢

⎣

0
0
...
x0

⎤

⎥

⎥

⎥

⎥

⎦

,ūk=

⎡

⎢

⎢

⎢

⎢

⎣

ukT
ukT+1

...
ukT+T−1

⎤

⎥

⎥

⎥

⎥

⎦

, ȳk=

⎡

⎢

⎢

⎢

⎢

⎣

y(k−1)T+1
y(k−1)T+2

...
y(k−1)T+T

⎤

⎥

⎥

⎥

⎥

⎦

,w̄k=

⎡

⎢

⎢

⎢

⎢

⎣

wkT
wkT+1

...
wkT+T−1

⎤

⎥

⎥

⎥

⎥

⎦

, v̄k=

⎡

⎢

⎢

⎢

⎢

⎣

v(k−1)T+1
v(k−1)T+2

...
v(k−1)T+T

⎤

⎥

⎥

⎥

⎥

⎦

,

Ā=

⎡

⎢

⎢

⎢

⎢

⎣

0 … 0 A0
0 … 0 A1A0
...

...
...

0 … 0 AT−1…A1A0

⎤

⎥

⎥

⎥

⎥

⎦

, B̄=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B0 0 … … 0

A1B0 B1
. . .

...

A2A1B0 A2B1
. . . . . .

...
...

...
. . . BT−2 0

AT−1…A1 AT−1…A2 … AT−1BT−2 BT−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

C̄=diag(C1, C2, …, CT−1, C0), Ḡ=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I 0 … … 0

A1 I
. . .

...

A2A1 A2
. . . . . .

...
...

...
. . . I 0

AT−1…A1 AT−1…A2 … AT−1 I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(11)

The lifted system can then be compactly written as
{

x̄k+1=Āx̄k+B̄ūk+Ḡw̄k

ȳk=C̄x̄k+v̄k
, (12)

where x̄k∈ℝnT , ūk∈ℝmT , and ȳk∈ℝpT are the stacked state, input, and output, respectively. The vectors w̄k∈ℝnT and v̄k∈ℝpT

represent the stacked process and measurement noises with associated covariance matrices given by Q̄=diag(Q,…,Q)∈ℝnT×nT

and R̄=diag(R,…,R)∈ℝpT×pT , respectively. Ā∈ℝnT×nT , B̄∈ℝnT×mT , and C̄∈ℝpT×nT are the invariant system matrices and
Ḡ∈ℝnT×nT encodes the effect of the process noise on the system dynamics.

4 OBSERVER GAINS

To compute the observer gains, two algorithms are used. First, the one-step algorithm, which solves the decentralized Kalman
filter (DKF) in closed-form and works by propagating the Kalman filter equations. The second algorithm is the finite-horizon,
which solves the DKF by iterating over a finite-time window, fixing all of the gains except for one single Kk in each iteration,
and solving a partial optimization problem.
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4.1 Time-lifted Kalman filter
The design of the decentralized LTP Kalman filter is posed as an optimization problem, as presented in Section 2. The approach
followed in this paper is to compute the observer gains by solving a lifted variation of problem (6), which allows to consider a
LTI system, obtained by time-lifting a LTP system, and applying the resulting gains to the periodic filter (2) and (4).
Consider the time-lifted system (12). The Kalman filter equations for the estimate and error covariance (2)−(5) can be

rewritten, for the time-lifted invariant system, as
̂̄xk+1|k=Ā ̂̄xk|k+B̄ūk , (13)

P̄k+1|k=ĀP̄k|kĀ
T +ḠQ̄ḠT , (14)

̂̄xk+1|k+1= ̂̄xk+1|k+1+K̄k+1(ȳk+1−C̄ ̂̄xk+1|k) , (15)

P̄k+1|k+1=K̄k+1R̄K̄
T
k+1+(I−K̄k+1C̄)P̄k+1|k(I−K̄k+1C̄)T , (16)

and the optimization problem (6) can now be reformulated as

minimize
K̄i,i=1,...,W

W
∑

k=1
tr(P̄k|k)

subject to K̄i∈Sparse(Ē),i=1,2,…,W ,

(17)

where Ē follows a block diagonal structure, Ē=diag(E,…,E)∈ℝnT×pT .
Solving problem (17) is not exactly equivalent to solving problem (6) due to the way P̄k|k is propagated but serves as a good

approximation. Indeed, consider for instance a system with period T =2. The predicted error covariance (14) can be expanded as
[

P1|0
P2|1

]

=
[

0 A0
0 A1A0

][

0
P0|0

][

0 A0
0 A1A0

]T

+ ḠQ̄ḠT

=
[

A0P0|0AT
0 A0P0|0(A1A0)T

(A1A0)P0|0AT
0 (A1A0)P0|0(A1A0)T

]

+
[

Q QAT
1

A1Q A1QAT
1 +Q

]

and the updated error covariance (16) is given by
[

P1|1
P2|2

]

=K̄1R̄K̄1+(I−K̄1C̄)
[

P1|0
P2|1

]

(I−K̄1C̄)T .

The non-diagonal terms of the predicted covariance are calculated with inconsistent dynamics matrices. However, due to the
sparsity constraint on the gain in the optimization problem, which follows a block diagonal structure, the non-diagonal blocks
are disregarded in the gain computation. Thus, the relevant terms are given by

⎧

⎪

⎨

⎪

⎩

P1|0=A0P0|0AT
0 +Q

P2|1=A1A0P0|0(A1A0)T +A1QAT
1 +Q

=A1P1|0AT
1 +Q

.

Compare this to the expressions obtained by expanding the periodic error covariance (3) and (5)

P1|0=A0P0|0AT
0 +Q

P1|1=K1RK1+(I−K1C1)(A0P0|0AT
0 +Q)(I−K1C1)T

P2|1=A1P1|1AT
1 +Q

In the periodic filter, the predicted covariance P2|1 is computed using the filtered covariance P1|1. On the other hand, the time-
lifted filter computes P2|1 as a function of P1|0. In essence, while the periodic filter computes the covariance step by step, in
the augmented filter T estimates are predicted and then filtered. Consequently, for periodic systems with a large period T , this
method is farther from optimality. But, for systems where T is not as sizable, the resulting filter performs very well, as it will
be shown in the simulation results.
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4.2 One-step method
For the one-step method, the strategy is to minimize the error covariance at each step, as in the classical Kalman filter. This can
be done for the time-lifted system by solving the optimization problem

minimize
K̄k+1

tr(P̄k+1|k+1)

subject to K̄k+1∈Sparse(Ē)
(18)

Notice that all the matrices involved in the optimal problem (18) are constant. Hence, the optimal solution of this problem,
detailed and derived in [9], can be applied here. The theorem describing the solution, specifically adapted for time-lifted system,
is presented next. Notice that the difference lies on the system matrices, which correspond to the time-lifted formulation that
was previously introduced.

Theorem 1. Consider a sparsity pattern Ē. Let li denote a column vector, whose entries are all set to zero except for the i−th one,
which is set to 1, and define i∶=diag(li). Define a vector mi to encode the nonzero entries in the i−th row of K̄k+1, following

{

mi(j)=0 if [Ē]ij=0
mi(j)=1 if [Ē]ij≠0

,

and leti=diag(mi). Then, the optimal one-step gain is given by

K̄k+1=
n
∑

i=1
iP̄k+1|kC̄

Ti(I−i+iS̄k+1i)−1 , (19)

where S̄k+1 is the innovation covariance at step k+1, given by

S̄k+1=C̄P̄k+1|kC̄
T +R̄ . (20)

To obtain the steady-state gains that stabilize the observer, propagate the error covariance equations (14) and (16) using the
computed gains K̄k+1 until the error covariance reaches a constant steady-state value.
To provide an example, this method was applied to a randomly generated system with n=5, p=4, and T =3. The relevant

system matrices are given by

A0=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.4279 −0.2368 0.2380 −0.0711 −0.0421
−0.3167 0.4445 0.0860 0.0732 0.2731
0.1251 −0.0783 0.2045 0.0933 0.2217
−0.0244 0.1118 0.0514 0.7449 −0.1913
0.0527 0.3360 0.1149 −0.1822 0.5821

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, A1=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1243 0.0740 0.0666 0.0240 0.2917
0.0478 0.2650 0.1951 0.1417 0.3739
0.1123 0.2366 0.1091 −0.0389 0.2680
0.0580 0.1633 −0.0228 0.0768 0.0865
0.2781 0.3349 0.3145 0.1259 0.4346

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

A2=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.2142 −0.0281 0.2117 0.2907 0.3462
−0.0281 −0.0392 0.1449 0.3959 0.1578
0.2117 0.1449 0.5101 0.2480 0.0562
0.2907 0.3959 0.2480 0.3354 −0.1079
0.3462 0.1578 0.0562 −0.1079 0.0269

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, C0=

⎡

⎢

⎢

⎢

⎢

⎣

0 1.1174 1.1006 −0.7423 0.7481
−0.7697 −1.0891 1.5442 −1.0616 −0.1924
0.3714 0.0326 0.0859 2.3505 0.8886
−0.2256 0 −1.4916 −0.6156 0

⎤

⎥

⎥

⎥

⎥

⎦

,

C1=

⎡

⎢

⎢

⎢

⎢

⎣

−2.3299 0.4517 0.8620 0 1.2607
−1.4491 −0.1303 0 0 0.6601

0 0.1837 0.4550 1.0391 −0.0679
0.3914 −0.4762 −0.8487 −1.1176 −0.1952

⎤

⎥

⎥

⎥

⎥

⎦

, C2=

⎡

⎢

⎢

⎢

⎢

⎣

1.1921 1.0205 −2.4863 0.0799 0.8577
−1.6118 0.8617 0.5812 −0.9485 0
−0.0245 0.0012 0 0.4115 0.4494

0 −0.0708 0 0.6770 0

⎤

⎥

⎥

⎥

⎥

⎦

,

Q=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3.4936 −0.0628 −0.1711 −0.0747 0.1485
−0.0628 4.7013 −0.0263 −0.1224 0.1059
−0.1711 −0.0263 2.4672 −0.0859 −0.1648
−0.0747 −0.1224 −0.0859 5.4152 0.0290
0.1485 0.1059 −0.1648 0.0290 3.1286

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, R=

⎡

⎢

⎢

⎢

⎢

⎣

4.8408 0.0130 0.1004 0.0556
0.0130 13.1181 −0.0201 −0.0560
0.1004 −0.0201 5.6185 −0.0739
0.0556 −0.0560 −0.0739 5.4767

⎤

⎥

⎥

⎥

⎥

⎦

,
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E=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0
0 1 0 0
0 0 1 0
1 1 0 0
1 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

For this system, the resulting steady-state gains are given by

K̄=diag(K1,K2,K0),

where

K1=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.2613 0 0.0103 0
0 0.0603 0 0
0 0 0.1030 0

0.0406 −0.0180 0 0
0.1485 0.0006 0 0.0438

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, K2=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1473 0 0.0112 0
0 0.1371 0 0
0 0 0.0795 0

−0.0041 −0.1601 0 0
0.1536 0.0356 0 0.0547

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

K0=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1173 0 0.1029 0
0 −0.1834 0 0
0 0 0.0976 0

−0.0938 −0.2118 0 0
0.1250 −0.0384 0 −0.0225

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The order of the Kalman gain blocks follows the same order as the output matrix C̄, defined in (11). Figure 1 shows the trace of
the covariance, obtained by propagating the covariance equations (3) and (5), that results when these periodic gains are applied
to the periodic filter (2) and (4).

Remark 1. It is important to stress that the one-step algorithm proposed herein compares well, from a computational point of
view, with the centralized counterpart, as shown in [32]. This is so because it inherits the properties of the one-step algorithm
for LTI system proposed in [9], only here the system has T n states instead of n states. However, that is exactly the same for the
centralized counterpart.

4.3 Finite-horizon method
This method, rather than optimizing the gains at each step, solves the finite-horizon problem (17), repeated here for clarity

minimize
K̄i,i=1,...,W

W
∑

k=1
tr(P̄k|k)

subject to K̄i∈Sparse(Ē),i=1,2,…,W .

(21)

The idea behind this formulation is to approximate the steady-state behaviour by making the window W large enough, thus
obtaining a gain that outperforms the one computed through the one-step method. However, this problem formulation is non-
convex, since the objective function is polynomial in the optimization variables K̄k. This can be verified by propagating the
covariances P̄k|k in terms of P̄0|0 and K̄k using (14) and (16). On the other hand, by fixing all of the gains as constants, except
for one K̄k, a partial problem can be written as

minimize
K̄k

W
∑

i=1
tr(P̄i|i)

subject to K̄k∈Sparse(Ē).
(22)

This way, the partial problem (22) becomes quadratic, since every gain except K̄k is constant. A closed-form solution to this
partial problem for LTI systems has already been demonstrated in [9] and an iterative algorithm that approximates the optimal
solution to the full problem is presented in the same paper. For the sake of completeness, the solution is adapted in the following
theorem for the time-lifted system. Notice that the difference lies on the system matrices, which correspond to the time-lifted
formulation that was previously introduced.
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Theorem 2. Define a matrix Z such that the vector Zvec(K̄k) contains the nonzero elements of K̄k according to the desired
sparsity pattern. The closed-form solution of (22) is given by

vec(K̄k)=ZT (Z(S̄k⊗�k+1)ZT )−1Zvec(�k+1P̄k|k−1C̄
T ), (23)

where S̄k is computed as in (20), and

�k+1=In+
W
∑

i=k+1
�Tk+1,i�k+1,i ,

with

�ki,kf =
kf
∏

j=ki

(In−K̄ki+kf−jC̄)Ā . (24)

When ki>kf , the convention �ki,kf =I is followed.

To provide an example, this method was applied to the same system used in Section 4.2. Figure 1 depicts the evolution of the
trace of the covariance with the finite-horizon gains. The steady-state gains obtained using this method are given by

K̄=diag(K1,K2,K0),

where

K1=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.2691 0 0.0053 0
0 0.0494 0 0
0 0 0.0966 0

0.0364 −0.0139 0 0
0.1361 0.0044 0 0.0512

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, K2=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1461 0 0.0064 0
0 0.1364 0 0
0 0 0.0700 0

−0.0060 −0.1608 0 0
0.1483 0.0331 0 0.0498

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

K0=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0964 0 0.0938 0
0 −0.1655 0 0
0 0 0.1239 0

−0.0657 −0.2030 0 0
0.2564 −0.0177 0 −0.0143

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The finite-horizon algorithm clearly outperforms the one-step method, at the cost of higher computational load.

FIGURE 1 Evolution of the trace of the covariance of the finite-horizon, one-step, and centralized solutions.
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4.4 Performance comparison
In the simulations, the randomly generated system in Section 4.2 was considered. The input matrices, with m=2, follow

B0=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −0.8637
−0.1649 0.0774

0 −1.2141
0 −1.1135

1.1093 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, B1=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −1.2571
−1.1201 −0.8655
2.5260 −0.1765
0 0.7914
0 −1.3320

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, B2=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1.2503
−0.0549 0.9298

0 0.2398
0 −0.6904

0.3502 −0.6516

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The initial condition for the state was set to x0=[4 1 2 1 3]T and the input is given by a constant signal uk=[0.5 1]T . For this
setting, to better evaluate the performance of the proposed solution, the Monte Carlo method was applied with 1000 simulations,
each carried out with different, randomly generated noise signals.
The initial estimate of the filter x̂0 is randomly generated in each Monte Carlo run, considering a Gaussian distribution with

mean x0 and standard deviation equal to the square root of the diagonal of P0|0, which was set at P0|0=7I. The process and
measurement noises are zero-mean Gaussian processes with standard deviation given by the square root of the diagonal of the
covariance matrices, Q and R, respectively. The one-step and finite-horizon methods lead to very similar filtering performance
in this case. This can be observed in Figure 2, which depicts the total norm of the estimation error of all state variables for
the one-step (solid line) and the finite-horizon (dashed-line) methods. To supplement the graphical data, Table 1 compares the
theoretical steady-state performance of the system between both methods. The performance value is obtained by summing the
trace of the steady-state covariance over one period tr(P∞)+⋯+tr(P∞+T−1). The measured performance over a period, averaged
over 1000 simulations, is detailed in Table 2. The finite-horizon method outperforms the one-step method. However, given the
heavier computational load for computing the finite-horizon gains, the one-step method would be preferable in most situations,
unless very fine estimates are required or the difference in performance is significant.

FIGURE 2 Total estimation error norm for the one-step and finite-horizon methods.

5 CONTROLLER GAINS

To compute the controller gains, the lifted dynamics are considered. First, the cost function (9) is reformulated as a quadratic
cost of the lifted system. Subsequently, an equivalent problem is derived that consists in the minimization of the steady-state



Ivan Andrushka ET AL 11

TABLE 1 Sum of the projected steady-state performances for the one-step and finite-horizon methods over one period (tr(P∞)+⋯+
tr(P∞+T−1)).

One-step Finite-horizon

67.6257 67.0842

TABLE 2 Sum of the measured steady-state performances for the one-step and finite-horizon methods over one period, averaged over 1000
simulations.

One-step Finite-horizon

67.7447 67.1648

solution of a difference matrix equation. Finally, the one-step algorithm is presented as a solution to this problem. This algorithm
optimizes the solution of said matrix equation at each time-step, which converges to well-performing steady-state feedback gains.

5.1 Cost function reformulation
Consider the lifted system

{

x̄k+1=Āx̄k+B̄ūk
ūk=−K̄x̄k

, (25)

where x̄, ū, Ā, and B̄ are defined as in (11). The infinite-horizon quadratic cost (9) can be reformulated, for the lifted dynamics,
as

J̄=
+∞
∑

k=0
(x̄Tk Q̄x̄k+ūTk R̄ūk), (26)

where Q̄=diag(Q,…,Q)∈ℝnT×nT and R̄=diag(R,…,R)∈ℝmT×mT . Now that the cost J̄ is written for an invariant system, it is
possible to follow the procedure described in [30]. The decentralized control problem can then be posed as

minimize
K̄

lim
k→∞

tr(P̄k)

subject to P̄k+1=(Ā−B̄K̄)T P̄k(Ā−B̄K̄)+Q̄+K̄
T R̄K̄

P̄0≻0
K̄∈Sparse(Ēc)

(27)

where the sparsity pattern Ēc∈ℝmT×nT follows the structure

Ēc=

⎡

⎢

⎢

⎢

⎢

⎣

0 … 0 Ec
0 … 0 Ec
...

...
...

0 … 0 Ec

⎤

⎥

⎥

⎥

⎥

⎦

. (28)

To see how the sparsity pattern is derived, see Appendix A, and for a detailed explanation on how (27) is derived, see [30]. This
problem formulation can now be used to develop an algorithm that computes well-performing steady-state feedback gains with
which the lifted input can be computed.

5.2 One-step method
Consider the difference matrix equation with a time-varying gain.

P̄k+1=(Ā−B̄K̄k+1)T P̄k(Ā−B̄K̄k+1)+Q̄+K̄
T
k+1R̄K̄k+1. (29)
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The idea behind the one-step method is to minimize the trace of P̄k+1 at each step by solving the optimization problem

minimize
K̄k+1

tr(P̄k+1)

subject to K̄k+1∈Sparse(Ēc).
(30)

Notice that P̄k+1 depends on P̄k. As such, this method amounts to propagating the difference equation P̄k+1 until steady-state
is achieved, similarly to the one-step method for computing the observer gains introduced in Section 4.2, which instead prop-
agates the covariance equations. In the unconstrained case, this method yields the optimal steady-state gain. However, for this
case, where the gain is subject to a sparsity constraint, the gain obtained is suboptimal. Nonetheless, since (30) is a quadratic
optimization problem subject to a linear constraint, it allows for the computation of well-performing steady-state gains in a very
computationally efficient way. To speed up the algorithm, the following theorem, adapted from [30], details the closed-form
solution of (30).

Theorem 3. Consider a sparsity pattern Ēc . Let li denote a column vector, whose entries are all set to zero except for the i−th
one, which is set to 1, and define i∶=diag(li). Define a vector mj to encode the nonzero entries in the j−th column of K̄k+1,
following

{

mj(i)=0 if [Ēc]ij=0
mj(i)=1 if [Ēc]ij≠0

,

and letj=diag(mj). Then, the optimal one-step gain is given by

K̄k+1=
n
∑

j=1
(I−j+j S̄k+1j)−1jB̄

T P̄kĀj , (31)

where S̄k+1 is given by
S̄k+1=B̄

T P̄kB̄+R̄ . (32)

To provide a simple example, this method was applied to a randomly generated systemwith n=4,m=3, and T =2. The relevant
system matrices are given by

A0=

⎡

⎢

⎢

⎢

⎢

⎣

−0.1334 0.0179 0.4882 0.3194
−0.1266 −0.3831 0.3269 −0.1444
0.5410 0.2399 0.7147 −0.0521
−0.1789 0.2931 0.0880 −0.2500

⎤

⎥

⎥

⎥

⎥

⎦

, A1=

⎡

⎢

⎢

⎢

⎢

⎣

0.6545 0.0417 −0.1223 −0.4364
0.0417 0.2136 0.0895 −0.7524
−0.1223 0.0895 0.7871 −0.0958
−0.4364 −0.7524 −0.0958 −0.3829

⎤

⎥

⎥

⎥

⎥

⎦

,

B0=

⎡

⎢

⎢

⎢

⎢

⎣

1.4022 0.0660 0.9287
−1.3677 0 −0.4908
−0.2925 −0.3222 0
1.2708 0 0.5907

⎤

⎥

⎥

⎥

⎥

⎦

, B1=

⎡

⎢

⎢

⎢

⎢

⎣

0 −0.3257 −2.1182
0 0 0.7071

0.7898 1.3096 −1.0434
−0.8012 0.1604 1.0682

⎤

⎥

⎥

⎥

⎥

⎦

,

E=
⎡

⎢

⎢

⎣

1 1 0 1
1 1 1 0
0 0 1 1

⎤

⎥

⎥

⎦

, Q=R=I.

This system was then lifted by applying the methodology introduced in Section 3. It is then straightforward to apply the one-
step method to the lifted dynamics. Figure 3 depicts the trace of P̄k. As it can be seen, a stable steady-state was achieved and
the control feedback gains obtained are given by

K0=
⎡

⎢

⎢

⎣

−0.0789 0.1482 0 −0.0174
−0.1858 −0.1168 −0.2385 0

0 0 0.0985 0.0715

⎤

⎥

⎥

⎦

,

K1=
⎡

⎢

⎢

⎣

−0.0051 −0.0561 0 −0.1209
0.2165 0.1508 0.1558 0
0 0 −0.1787 −0.0808

⎤

⎥

⎥

⎦

.
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FIGURE 3 Trace of P̄k of the one-step and centralized solutions.

6 SIMULATION RESULTS FOR THE QUADRUPLE-TANK PROCESS

This section details the application of the proposed solution to the case of a quadruple-tank process [31]. The observer is
implemented as a continuous-discrete filter for the linearized dynamics of the QTP. The controllers are designed for the linearized
dynamics augmented with additional integral states that accumulate the output tracking error, thus reduce the steady-state error
to zero. Then, a controller is implemented at each pump. The performance of these solutions is assessed via simulation results.

6.1 Quadruple-tank process
Consider a system of four interconnected tanks, such as the one depicted in Figure 4. The nonlinear, continuous-time dynamics
of this system are given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ1=−
r1
R1

√

2gx1+
r3
R1

√

2gx3+
1k1
R1
u1

ẋ2=−
r2
R2

√

2gx2+
r4
R2

√

2gx4+
2k2
R2
u2

ẋ3=−
r3
R3

√

2gx3+
(1−2)k2
R3

u2
ẋ4=−

r4
R4

√

2gx4+
(1−1)k1
R4

u1

, (33)

where xi is the water level of tank i, Ri is the cross-section, and ri is the cross-section of the outlet hole for i=1,2,3,4. The
voltage applied to pump i, i=1,2, is ui, and the corresponding flow is kiui. This flow is controlled by the valves i∈(0,1), where
a higher value of i means more flow is directed towards the bottom tanks, while a lower value corresponds to more flow being
directed to the upper tanks. The acceleration of gravity is denoted g. The parameter values used in the simulations are presented
in Table 3.
It is assumed that the water level of each tank can be measured. This way, the state-space representation of (33) is given by

{

ẋ=f(x,u)
y=x

, (34)

where x is the state, u is the input, and y is the output. The function f(x,u) represents the nonlinear dynamics, which can be
directly inferred from (33).



14 Ivan Andrushka ET AL

TABLE 3 Parameter values of the QTP used in the simulations.

Parameter (unit) Value

R1,R3 (cm2) 28
R2,R4 (cm2) 32
r1,r3 (cm2) 0.071
r2,r4 (cm2) 0.057
1 0.7
2 0.6
g (cm∕s2) 981

FIGURE 4 Quadruple-tank process.

6.2 Linearization and discretization
Let xnom, unom, and ynom be a nominal periodic trajectory for the state, input, and output, respectively. Now, introduce the pertur-
bation variables Δx=x−xnom, Δu=u−unom, and Δy=y−ynom. The dynamics of the QTP linearized about its nominal trajectory
are given by

A(t)= )f
)x

|

|

|

|xnom
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− 1
T1

0 R3
R1T3

0

0 − 1
T2

0 R4
R2T4

0 0 − 1
T3

0
0 0 0 − 1

T4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, B= )f
)u

|

|

|

|unom
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1k1
A1

0

0 2k2
A2

0 (1−2)k2
A3

(1−1)k1
A4

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (35)
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where the time constants Ti are

Ti=
Ri
ri

√

2xinom
g

, i=1,…,4. (36)

The state-space representation of the linearized system can then be written as
{

Δẋ= A(t)Δx+BΔu
Δy=CΔx

, (37)

where C=I. To simplify the notation, from this point forward, a signal at step k will be denoted by v(k). To obtain a discrete-
time model of the system, consider a constant sampling interval Ts. The discrete-time dynamics, assuming zero-order hold of
the input and that A(tk) is invertible [33, pp. 26-27], are described by

{

Δx(k+1)=Ad(k)Δx(k)+Bd(k)Δu(k)
Δy(k)=CdΔx(k)

, (38)

where
⎧

⎪

⎨

⎪

⎩

Ad(k)=eA(tk)Ts

Bd(k)=Ad(k)(I−e−A(tk)Ts)A−1(tk)B
Cd=C

. (39)

6.3 Filter implementation
Following the previous discussion, it is possible to design local state observers by decoupling the discrete LTP dynamics (38).
Let A(i,j),i,j=1,…,4, denote the element on the i−th row and j−th column of A. The predicted linearized estimates of each
tank are given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Δx̂1(k+1|k)=Ad(k)(1,1)Δx̂1(k|k)+Ad(k)(1,3)Δx̂3(k|k)+Bd(k)(1,1)Δu1(k)+Bd(k)(1,2)Δu2(k)

Δx̂2(k+1|k)=Ad(k)(2,2)Δx̂2(k|k)+Ad(k)(2,4)Δx̂4(k|k)+Bd(k)(2,1)Δu1(k)+Bd(k)(2,2)Δu2(k)

Δx̂3(k+1|k)=Ad(k)(3,3)Δx̂3(k|k)+Bd(k)(3,2)Δu2(k)

Δx̂4(k+1|k)=Ad(k)(4,4)Δx̂4(k|k)+Bd(k)(4,1)Δu1(k)

(40)

Notice that the state equations of tanks 1 and 2 depend on the estimates of tanks 3 and 4, respectively. It is assumed that these
estimates are obtained by means of communication.
When the output sample k+1 is available, the filtered linearized estimate is determined by

Δx̂i(k+1|k+1)=Δx̂i(k+1|k)+K(k+1)(i,i)(Δyi(tk+1)−C
(i,i)
d Δx̂i(k+1|k)). (41)

Finally, the actual state estimates can be recovered with

x̂i(k+1|k+1)=Δx̂i(k+1|k+1)+xinom . (42)

To compute the observer gains, the methodology introduced in Section 4 can be applied to the discrete-time dynamics (40). The
following section provides a detailed example of this and simulation results are presented to assess the performance of the filter.

6.4 Filter simulation
To obtain a nominal periodic trajectory for the system, the nonlinear system (34) was simulated with a periodic input signal
u=unom. Figure 5 depicts the input signal used and the resulting response of the system can be seen in Figure 6. As it can be
observed, for a given constant section of u, the system reaches an equilibrium after some time. The various equilibrium points
form a periodic trajectory for the state, and their values are depicted in Table 4. The discretized system matrices, linearized
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about the equilibria and considering a sampling time of Ts=1s, follow

Ad(0)=

⎡

⎢

⎢

⎢

⎢

⎣

0.8890 0 0.3846 0
0 0.9054 0 0.1718
0 0 0.5903 0
0 0 0 0.8192

⎤

⎥

⎥

⎥

⎥

⎦

, Ad(1)=

⎡

⎢

⎢

⎢

⎢

⎣

0.9664 0 0.0984 0
0 0.9754 0 0.0635
0 0 0.8999 0
0 0 0 0.9357

⎤

⎥

⎥

⎥

⎥

⎦

,

Ad(2)=

⎡

⎢

⎢

⎢

⎢

⎣

0.9484 0 0.1568 0
0 0.9611 0 0.0930
0 0 0.8388 0
0 0 0 0.9051

⎤

⎥

⎥

⎥

⎥

⎦

, Ad(3)=

⎡

⎢

⎢

⎢

⎢

⎣

0.9593 0 0.1209 0
0 0.9699 0 0.0755
0 0 0.8765 0
0 0 0 0.9233

⎤

⎥

⎥

⎥

⎥

⎦

,

Bd(0)=

⎡

⎢

⎢

⎢

⎢

⎣

0.0785 0.0102
0.0028 0.0598
0 0.0372

0.0283 0

⎤

⎥

⎥

⎥

⎥

⎦

,Bd(1)=

⎡

⎢

⎢

⎢

⎢

⎣

0.0818 0.0024
0.0010 0.0620
0 0.0454

0.0302 0

⎤

⎥

⎥

⎥

⎥

⎦

, Bd(2)=

⎡

⎢

⎢

⎢

⎢

⎣

0.0811 0.0039
0.0015 0.0616
0 0.0439

0.0297 0

⎤

⎥

⎥

⎥

⎥

⎦

,Bd(3)=

⎡

⎢

⎢

⎢

⎢

⎣

0.0815 0.0030
0.0012 0.0619
0 0.0448

0.0300 0

⎤

⎥

⎥

⎥

⎥

⎦

,

leading to a LTP system with period T =4. In reality, since each constant input section is simulated for 200 samples, the period
of the system is actually T =800, where the system dynamics follow

(Ad(0),Bd(0)), k=0,…,199
(Ad(1),Bd(1)), k=200,…,399
(Ad(2),Bd(2)), k=400,…,599
(Ad(3),Bd(3)), k=600,…,799
(Ad(0),Bd(0)), k=800,…,999

and so forth. Nonetheless, to compute the observer gains, it will be shown via simulation results that it is reasonable to assume
that the system has period T =4.
Regarding sensor noise, the measurementsΔy(k+1)were corrupted by additive white Gaussian noise v(k+1)with zero-mean

and covariance given by

R=

⎡

⎢

⎢

⎢

⎢

⎣

0.1 0.05 0.05 0.05
0.05 0.1 0.05 0.05
0.05 0.05 0.1 0.05
0.05 0.05 0.05 0.1

⎤

⎥

⎥

⎥

⎥

⎦

.

The process noise covariance was set to Q=0.01I. Given that it was considered that there is no process noise in the system
model, the covariance Q was used purely as a tuning parameter for the filter. Notice that it can also be used to take into account
linearization errors. In regards to the measurement topology, it was assumed that each tank only has access to its own measure-
ments. This way, the sparsity pattern is given by E=I. A simulation of the filter, implemented with the one-step gains computed
with T =4, can be seen in Figure 7. The total estimation error norm is depicted in Figure 8, and a detailed view of the estimation
error for each of the states can be seen in Figure 9. The simulations of the filters with the one-step gains with T =800 and with
the finite-horizon gains are not presented, as the results are very similar. A more detailed analysis, that showcases the difference
in filtering performance, is presented in the following section.

TABLE 4 Equilibrium points for the input signal represented in Figure 5.

Water level (cm) Eq0 (t=195s) Eq1 (t=395s) Eq2 (t=595s) Eq3 (t=795s)

x1 0.2276 2.7012 1.1253 1.8292
x2 0.1575 2.5067 0.9868 1.6640
x3 0.0113 0.2837 0.1021 0.1815
x4 0.0391 0.3523 0.1566 0.2446
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FIGURE 5 Periodic input signal used in the simulations. FIGURE 6 Response of the nonlinear system.

FIGURE 7 Filter simulation with the one-step gains computed with T =4.

6.5 Monte Carlo analysis
To compare the filtering performance, similarly to Section 4.4, 1000 simulations were carried out, each with different, randomly
generated noise signals. Figs. 10 and 11 depict the total estimation error norm, averaged over 1000 simulations, of the filters
(40)-(42) implemented using the one-step and the finite-horizon methods for computing the observer gains, respectively. The
one-step method was used to compute the gains assuming that the system has period T =4 and T =800, while the finite-horizon
method was only applied for T =4 due to the higher computational requirements associated with this algorithm. The measured
performance (sum of the variances over one period) is also shown in Table 5. The measured results suggest that the finite-horizon
method leads to the best filtering performance, followed by the one-step method for T =4, and lastly the one-step method for
T =800. While it may seem counterintuitive that considering a higher period leads to worse filtering performance, recall the
discussion presented in Section 4.1. Due to the sub-optimality of the lifted filter, using such a high period to compute the gains
might end up introducing a significant amount of error when applying these gains to the LTP filter. Notice that, in all cases, the
estimation error norm peaks when the equilibrium, and consequently the system dynamics, changes. This result is expected, as
the transient sections before the system reaches its steady-state behaviour are not accurately described by the linearized model.
To further cement this argument, Figure 12 presents a detailed view of estimation error of each state for the observer implemented
with the finite-horizon gains. During the transient phase, the estimation error for tanks 1 and 2 is higher compared to tanks 3
and 4, as the variations around the equilibrium are larger.
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FIGURE 8 Estimation error norm for the filter imple-
mented with the one-step gains computed with T =4.

FIGURE 9 Detailed view of the estimation error for the
one-step filter (T =4).

FIGURE 10 Total estimation error norm of the filter with
the one-step gains (T =800 and T =4) averaged over 1000
simulations.

FIGURE 11 Total estimation error norm of the filter with
the finite-horizon gains averaged over 1000 simulations.

TABLE 5 Measured performance (sum of variances over one period) of the filters averaged over 1000 simulations.

One-step (T=4) One-step (T=800) Finite-horizon

56.4021 110.5661 55.5212

6.6 Control
The objective of the controllers designed in this section is to control the water level in tanks 1 and 2. Thus, only x1 and x2 are
assumed to be measured and, consequently, the output matrix is now given by

C=
[

1 0 0 0
0 1 0 0

]

.

The system was then linearized about the equilibrium points depicted in Table 6, yielding a system with period T =3. Following
this, the system was discretized with a sampling time Ts=1s. To follow a constant reference signal r(k), two additional state
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FIGURE 12 Detailed view of the estimation error of the filter implemented with the finite-horizon gains averaged over 1000
simulations.

variables q(k)=[q1(k) q2(k)] that accumulate the output tracking error were included, as given by

q(k+1)=q(k)+(Δy(k)−r(k)).

This yields the LTP system

⎧

⎪

⎨

⎪

⎩

[

Δx(k+1)
q(k+1)

]

=

[

Ad(k) 0
Cd I

][

Δx(k)
q(k)

]

+

[

Bd(k) 0
0 −I

][

Δu(k)
r(k)

]

Δy(k)=CdΔx(k)

(43)

It is then possible to compute the lifted controller gains by using the one-step method on the lifted system, obtained by applying
the time-lifting technique introduced in Section 3 to (43). In the simulations, a local controller is implemented at each pump.
For Pump 1, the controller uses the measured output x1(t) and its integral state q1(k), while for Pump 2 the controller has access
to x2(t) and q2(k). Consequently, the sparsity pattern Ec is given by

Ec=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (44)

It is important to note that the controllers compute the lifted input signal

ū(k)=−K̄x̄(k), K̄∈Sparse(Ēc),

and each component is then applied to the system at the correct time-step. For the simulations, the weight matrices were set
to Q=I and R=I,10I,100I. Figure 13 depicts the trace of P̄(k). Figure 14 depicts the response of the controller with the gains
computed for R=I, implemented in Pump 1, to a sequence of periodic steps, and Figure 15 is the corresponding input signal
generated. A detailed view that compares the results with the different weights can be seen in Figs. 16 and 17. As it can be
seen, with a higher weight the controller generates an input signal of smaller magnitude, with the trade-off of having a slower
response to the steps.
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TABLE 6 Equilibrium points.

Eq0 Eq1 Eq2
x1 (cm) 1.3626 12.2594 5.4503
x2 (cm) 1.4204 12.7404 5.6845
x3 (cm) 0.1815 1.6339 0.7262
x4 (cm) 0.1566 1.4090 0.6262
u1 (V) 1 3 2
u2 (V) 1 3 2

FIGURE 13 Trace of P̄k.

FIGURE 14 Response of the closed-loop system to a
sequence of periodic steps.

FIGURE 15 Input signal sent to Pump 1.
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FIGURE 16 Comparison of the closed-loop system
response with different weights.

FIGURE 17 Comparison of the input signals generated
by the controllers with different weights.

7 SIMULATION RESULTS FOR THEN-TANK PROCESS

In this section, further simulation results are presented, now for the case of a system ofN interconnected water tanks. Given that
this system is an extension of the QTP, the process of designing the local state observers and local controllers is very similar.
The dynamics, filter design, and controller design are briefly presented for the general case of N tanks, and then, simulations
results are shown for the specific case ofN=40.

7.1 Dynamics of the N-tank process
Consider the system ofN interconnected water tanks depicted in Figure 18. The nonlinear dynamics of this system are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1=−
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√

2gx1+
rN
2 +1

R1

√
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2
+1+

1k1
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√
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ẋN
2
+2=−
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RN
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...

ẋN=−
rN
RN

√

2gxN+
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2 −1
)kN

2 −1

RN
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2
−1

, (45)

where xi is the water level of tank i, Ri is the cross-section, and ri is the cross-section of the outlet hole for i=1,…,N . The
voltage applied to pump i, i=1,…,N

2
, is ui, and the corresponding flow is kiui. This flow is controlled by the valves i∈(0,1).

The parameter values used in the simulations are presented in Table 7. The linearized system matrices follow
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TABLE 7 Parameter values of theN-tank process used in the simulations.

Parameter (unit) Value

Ri (cm2) 28
ri (cm2) 0.071
i 0.7
g (cm∕s2) 981

FIGURE 18N-tank process.

A(t)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢
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⎢

⎣
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...
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...
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...
. . . . . . . . .

...
...

. . . . . . 0
0 … … … … … 0 − 1

TN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥
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,
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B=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1k1
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0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

... 0
N
2
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(1−N

2
)kN
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0 … … 0

0
. . . . . .

...
...

. . . . . .
...

...
. . .

...

0 … 0
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Ti is computed as in (36), for i=1,…,N . The discrete-time dynamics Ad(k),Bd(k), and Cd can be obtained by applying
the transformation (39).

7.2 Filter implementation
The local state observers are obtained by decoupling the system dynamics, similarly to the approach introduced in Section 6.3.
The prediction step is given by
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⎪

⎪

⎪

⎪

⎩
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2
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...
Δx̂N (k+1|k)=Ad(k)(N,N)Δx̂N (k|k)+Bd(k)

(N,N
2
−1)ΔuN

2
−1(k)

(46)

and the filtered state estimate follows

Δx̂i(k+1|k+1)=Δx̂i(k+1|k)+K(k+1)(i,i)(Δyi(tk+1)−C
(i,i)
d Δx̂i(k+1|k)). (47)

Then, the actual state estimates can be recovered with

x̂i(k+1|k+1)=Δx̂i(k+1|k+1)+xinom . (48)

7.3 Filter simulation and Monte Carlo analysis
The simulations presented here were performed for the case of 40 tanks. Analogously to Section 6.4, a nominal trajectory was
obtained by simulating the nonlinear dynamics (45) with a periodic input u=unom. Each component ui,i=1,…,20, of the input
signal was composed of 4 constant sections, each with a duration of 200s. This results in a system with period T =800, and
4 equilibrium points. The sampling time was, once again, set to Ts=1s. The measurements were corrupted by additive white
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Gaussian noise with zero-mean and covariance given by

R=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1 0.05 … 0.05

0.05
. . . . . .

...
...

. . . . . . 0.05
0.05 … 0.05 0.1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The process noise covariance, which was used as a tuning parameter, was set to Q=0.01I and the sparsity pattern is given by
E=I. To compare the performance of the competing solutions, 1000 simulations were carried out. Figure 19 depicts the total
estimation error norm for the filter with the one-step gains, computed assuming a period of T =4 and T =20. A higher period
was not considered due to the heavier computational requirements associated with this larger system. Nonetheless, the results
obtained suggest that using a larger period to compute the gains leads to worse filter performance, which is in accordance with
the results obtained in Section 6.5. The total estimation error norm for the filter with finite-horizon gains can be seen in Figure
20. The measured performance of the three competing solutions is shown in Table 8. These results further cement the finite-
horizon method as the superior choice when filtering performance is the main priority. The one-step method also performs very
well and, given the computational efficiency of this method, it is still a solid choice in most situations.

FIGURE 19 Total estimation error norm for the filter
with the one-step gains (T =20 and T =4) averaged over
1000 simulations.

FIGURE 20 Total estimation error norm for the filter
with finite-horizon gains averaged over 1000 simulations.

TABLE 8 Measured performance of the filters (sum of variances over one period) averaged over 1000 simulations.

One-step (T=4) One-step (T=800) Finite-horizon

465.0487 624.7562 454.9105
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7.4 Control
To control the water level of the bottom tanks, a local controller is implemented at each pump. Since only x1,…,xN

2
are relevant,

the output matrix is reduced to
C=

[

IN
2
0N

2

]

,

where IN
2
and 0N

2
represent the identity and zero matrices of size N

2
, respectively. This system was linearized about the equilibria

depicted in Table 9 and then discretized with a sampling time of Ts=1s. Similarly to the approach introduced for the QTP
in Section 6.6, the system was augmented with N

2
integral states. The resulting system has the same structure as (43), and is

repeated here for clarity
⎧

⎪

⎨

⎪

⎩

[

Δx(k+1)
q(k+1)

]

=

[

Ad(k) 0
Cd I

][

Δx(k)
q(k)

]

+

[

Bd(k) 0
0 −I

][

Δu(k)
r(k)

]

Δy(k)=CdΔx(k)
(49)

Given that each local controller has access only to the water level xi and its respective integral state qi, the sparsity pattern follows

Ec=
[

IN
2
0N

2
IN
2

0N
2
0N

2
0N

2

]

.

In the simulations that follow, N=40 tanks were considered. Figure 21 represents the trace of P̄k associated with the gains
computed using one-step method, withQ=I and R=I,10I,100I. Figs. 22 and 23 depict the evolution of x1 and Δu1 in response
to a sequence of periodic steps, for the controller implemented with the gains computed for R=I. A more detailed view can be
seen in Figs. 24 and 25, also showcasing the effect of varying the value of R.

TABLE 9 Equilibrium points.

Eq0 Eq1 Eq2
xi,i=1,…

N
2
(cm) 5.4265 10.0906 3.2402

xi,i=
N
2
+1,…,N (cm) 0.4884 0.9082 0.2916

ui,i=1,…,N
2
(V) 2.2 3 1.7

8 CONCLUSIONS

This paper addressed the problems of decentralized control and state estimation for linear time-periodic systems. The estimation
problem was formulated as a discrete-time Kalman filter with sparsity constraints on the gains and, based on a LTI reformulation
of the periodic dynamics, two methods were presented. The first method is an adaptation of the classic Kalman filter equations
for LTI systems to decentralized LTP systems, making this a well-performing and very computationally efficient algorithm. The
second method solves an optimization problem over a finite-time window to approximate steady-state behaviour and compute
well-performing gains. The control problem was formulated as an infinite-horizon cost optimization for the lifted dynamics, and
was then reformulated as the minimization of a difference matrix equation, subject to a sparsity constraint. The one-step method,
which computes the gains very efficiently, by minimizing the trace of the difference equation, was presented. The proposed
algorithms were particularized to the case of a system of four interconnected water tanks, and simulation results were presented
to assess the performance of the proposed solutions. Further simulation results were presented for an extended case where forty
interconnected tanks were considered. In regards to state estimation, it was shown that the finite-horizon method achieves better
filtering performance than the one-step method, at the cost of being computationally heavier. The control solution that was
proposed performs adequately and it was shown that the controller gains can be manually optimized by adjusting the weight
matrices of the cost function.
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FIGURE 21 Trace of P̄k.

FIGURE 22 Response of the closed-loop system to a
sequence of periodic steps.

FIGURE 23 Input signal sent to Pump 1.
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APPENDIX

A PROOF OF THE LIFTED SPARSITY PATTERN

Consider the LTP system with period T =3 given by
{

xk+1=Akxk+Bkuk
uk=−Kkxk

. (A1)
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The control signal can be expanded as follows

u0=−K0x0,
u1=−K1x1,
u2=−K2x2,
u3=−K0x3,
u4=−K1x4,
u5=−K2x5,

and so forth. Now doing the same for the lifted input yields

⎡

⎢

⎢

⎣

u0
u1
u2

⎤

⎥

⎥

⎦

=−
⎡

⎢

⎢

⎣

K11
0 K12

0 K13
0

K21
1 K22

1 K23
1

K31
2 K32

2 K33
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
0
x0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

u3
u4
u5

⎤

⎥

⎥

⎦

=−
⎡

⎢

⎢

⎣

K11
0 K12

0 K13
0

K21
1 K22

1 K23
1

K31
2 K32

2 K33
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1
x2
x3

⎤

⎥

⎥

⎦

,

and so forth. To further simplify the discussion, consider only the first period. The lifted input can be worked out to

u0=−K13
0 x0,

u1=−K23
1 x0,

u2=−K33
2 x0.

Comparing the lifted and periodic inputs makes it obvious that they are computed differently, given that the lifted input is
computed using only x0. However, it is important to note that the gains that minimize the control optimization problem depend
on the lifted matrices Ā and B̄, which encode the system dynamics and input over a full period. With that in mind, and due to
the special structure of the dynamics matrix Ā, it becomes apparent that the gainsK23

1 andK33
2 are computed with the dynamics

and input associated with following time-steps, thus having the state transition effect embedded in their design. To enforce that
the following periods are consistent with the first, the lifted gain matrix must have the structure

K̄=
⎡

⎢

⎢

⎣

0 0 K13
0

0 0 K23
1

0 0 K33
2

⎤

⎥

⎥

⎦

.

For the centralized case, this lifted structure leads to a lifted control law equivalent to the periodic control law, as shown in [29].
This result can be further extended to the decentralized case by enforcing that the lifted sparsity pattern has the structure

Ēc=
⎡

⎢

⎢

⎣

0 0 Ec
0 0 Ec
0 0 Ec

⎤

⎥

⎥

⎦

.
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