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Abstract

Constrained formations of vehicles are interesting in a variety of space mission scenarios for their potential ability to solve complex problems
with relatively simple and specialized individual systems. However, the analysis of such formations can present some challenges. In this paper,
an attitude observer is designed with the intent of applying it to three-vehicle heterogeneous formations with no line of sight between two of
the vehicles. Each vehicle measures directions to other vehicles and independent inertial reference vectors. The relative direction between the
two vehicles with no line of sight cannot be measured. Under some assumptions, these relative measurements yield a reconstructed attitude,
which, together with the angular velocities measured by rate gyros, drive the observers. The attitude observers are identical and independently
applied to each vehicle. Their design is based on the Lagrange-d’Alembert principle of variational mechanics, considering only kinematic
models. The attitude observers are locally exponentially stable and each estimation error is shown to converge to zero error for almost all initial
conditions. Finally, a series of numerical Monte Carlo simulations of the discrete-time form of the observers validate the stability and convergence
characteristics of the observers under the appropriate assumptions on the availability of a reconstructed attitude.
© 2022 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction

Formations are appealing to many scientific fields because
they can accomplish complex missions with relatively simple
individual systems, which are inherently easier to build and de-
ploy (Cao et al., 1997). In the spaceflight context, a formation
should be distinguished from a constellation, because there is
a coupling between the dynamic states of its elements (Scharf
et al., 2003).

The constrained formation considered in this paper was stud-
ied in (Cruz & Batista, 2019), where the measurement of some
vehicles is restricted, either by the sensor capacity or by envi-
ronment imposed limitations. An attitude estimation problem
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for a three-vehicle formation can be found in (Andrle et al.,
2009) and an application to that problem is found in (Wang
et al., 2019), which considers a formation of small satellites.
An extended Kalman filter is applied to the three-vehicle for-
mation in (Kim et al., 2007) using rate-gyros to measure the
angular velocity. In (Linares et al., 2011), the attitude of a two
vehicle constrained formation with a common landmark is de-
termined. More recently, (Wu, 2020) considered an attitude
problem where both hand-eye and vector measurements were
used to minimize a cost function and determine the relative at-
titude between two spacecraft.

Such systems find some of its applications in the context of
space missions, more specifically if the distance between the
elements of the formation is large. Examples can be found, for
instance, when synthesizing large aperture telescopes or long
baseline interferometers far from Earth, or even when sampling
spatially disperse phenomena such as the Earth’s magnetotail
(Cesarone et al., 2007).
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An important problem in many space systems is that of at-
titude estimation, that is, the knowledge of the relative orienta-
tion between two relevant coordinate frames. Early attitude es-
timation methods include deterministic approaches such as the
Tri-Axial Attitude Determination (TRIAD) algorithm (Black,
1964) and solutions of the Wahba’s problem (Wahba, 1965).
Examples for the latter and other nonlinear estimation methods
can be found in (Crassidis et al., 2007). The design of an esti-
mation method considers different goals. Some methods seek
fast or even optimal performance (Wu et al., 2018), some look
for robustness (Sanyal et al., 2008), while others prioritize low
computational complexity for cost reduction. Often, a combi-
nation of these and other goals are considered (Batista et al.,
2012).

A useful strategy to design filtering schemes is using the
minimization of an “energy” function, which can be helpful
in fulfilling stability criteria. These can be implemented us-
ing the Hamilton-Jacobi-Bellman theory (Aguiar & Hespanha,
2006; Zamani et al., 2011), but also by applying the variational
mechanics principles (Izadi & Sanyal, 2014). These principles
have been applied not only to spacecraft (Misra et al., 2016),
but also to landing rovers (Li et al., 2020).

This work follows those same principles to obtain an esti-
mate for all the attitudes of the three vehicle constrained for-
mation proposed in (Cruz & Batista, 2019), while accounting
for the attitude kinematics and with stability assurances. The
purpose of designing such an observer is to improve the accu-
racy of the estimate by filtering the errors using angular veloc-
ity information because sensors that measure such values are
common in spacecraft. Moreover, since attitude observers can
be driven by reconstructed attitudes (Mahony et al., 2008) and
there is an appropriate deterministic algorithm for attitude re-
construction in this formation, then the observer in this paper is
driven by such variables, instead of being directly driven by the
measurements.

The main contribution of this paper is the design of an at-
titude observer which filters the errors of the deterministic at-
titude reconstruction by considering angular velocity measure-
ments. Previous work by the authors can be found in (Cruz
et al., 2021). This paper presents a unified and thorough presen-
tation and analysis of the solution, and it includes all the theo-
rems and proofs that had been omitted in the conference paper.
Finally, extensive and realistic simulations are also presented in
detail, including the performance evaluation with Monte Carlo
runs.

This paper is organized as follows. Section II describes the
constrained formation, the attitude estimation problem, and the
attitude reconstruction algorithm. In Section III, the observer
is derived based on variational mechanics. This method relies
on an energy-like function of the estimation errors, which is
given by the Lagrangian and the application of the Lagrange-
d’Alembert principle. The stability analysis follows and it is
shown that the observer error converges to zero for almost all
initial conditions and also that the origin is locally exponen-
tially stable. Next, a first order discrete-time implementation
of the filter is summarized in Section IV, which is derived from
the discrete-time Lagrange-d’Alembert principle (Marsden &

West, 2001). Finally, in Section V, the discrete-time filter is im-
plemented in numerical simulations, which in a series of Monte
Carlo runs evidence the convergence characteristics and perfor-
mance of the observer.

2. Problem statement

2.1. Notation

Throughout this document, scalars are expressed in regular
typeface and regular case, vectors are expressed in bold and reg-
ular case, and matrices are expressed in bold and upper case.
The symbol 0 represents the null vector or matrix and I repre-
sents the identity matrix. The set of unit vectors in R3 is denoted
by S2 :=

{
x ∈ R3 : ∥x∥ = 1

}
. The special orthogonal group of

dimension 3, which describes proper rotations, is denoted by
SO(3) :=

{
X ∈ R3×3 : XXT=XTX=I ∧ det (X)=1

}
.

The skew-symmetric matrix parameterized by x ∈ R3, which
encodes the cross product operator in R3, is denoted by

S (x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,
with x = [x1 x2 x3]T. Therefore, S (x) y = x × y, with y ∈ R3,
and S−1

(.) denotes the unskew operator, i.e. S−1
(S (x)) = x.

The rotation matrix in SO(3) that transforms a given vector,
in R3, expressed in the body-fixed frame of vehicle j into the
inertial frame is denoted by RI

j. If the rotation transforms a
vector from the body-fixed frame of the j-th vehicle to the body-
fixed frame of the i-th vehicle it is represented as Ri

j, instead.
The rotation matrix of an angle θ ∈ R about the axis described
by the unit vector x ∈ S2 is denoted by R (θ, x), which is written
as (Markley & Crassidis, 2014)

R (θ, x) := cos (θ) I + (1 − cos(θ))xxT − sin (θ) S (x) . (1)

Finally, the four-quadrant inverse tangent function is denoted
by atan2 (b, a), with a, b ∈ R, and the inverse cosine function is
denoted as arccos(a).

2.2. Problem statement

Consider a formation with three vehicles, each with a body-
fixed coordinate frame. All vehicles are equipped with vision-
based sensors, which measure directions with respect to other
vehicles in their lines of sight, and sensors that measure direc-
tions of inertial references, such as the direction to a cluster of
stars, a magnetic field, or other known references. Finally, it is
assumed that each vehicle has three orthogonally-mounted rate
gyros, which give a measurement of the angular velocity vector.
Each sensor gives measurements in their respective body-fixed
coordinate frames.

The measurement set of each element of the formation com-
prises its own angular velocity, one reference direction, and di-
rections to at least one vehicle. The deputies, which is the desig-
nation of vehicles 2 and 3, cannot measure the relative direction
with respect to one another, because the line of sight between
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Fig. 1. Three-vehicle heterogeneous formation

them is assumed limited. In contrast, vehicle 1 measures rela-
tive directions to both deputies. The formation and respective
measurements are depicted in Fig. 1.

The letter d denotes the direction measurements, while the
symbolω denotes the angular velocity measurements. The sub-
script in the reference direction and angular velocity measure-
ments indicates the vehicle taking the measurement, whereas
the subscript in the relative measurements indicates both the ve-
hicle taking the measurement and the respective target, i.e., the
subscript j/k indicates that the measurement was taken by ve-
hicle j and it is a relative direction pointing to vehicle k. More-
over, a left superscript indicates the frame where the measure-
ment is represented, for instance, Id j is the measurement taken
by vehicle j represented in the inertial frame. The left super-
script is omitted if the frame in which the vector is represented
coincides with the body-fixed frame of the vehicle taking the
measurement. Therefore, the four relative measurements are
denoted as d1/2, d2/1, d1/3, and d3/1, the measurements of the
inertial references are denoted as d1, d2, and d3, which, in the
inertial frame, are respectively denoted as Id1, Id2, and Id3. The
value of the latter is assumed to be known. Finally, the angu-
lar velocity of each vehicle is respectively represented as ω1,
ω2, and ω3. These are assumed to be continuous, bounded, and
unbiased.

The attitude kinematics of the j-th vehicle is given by

ṘI
j(t) = RI

j(t) S
(
ω j(t)

)
. (2)

The observer kinematics is a copy of the true attitude kine-
matics, which with the observer internal representation of the
attitude and angular velocity denoted by ω̂ j, is given, for vehi-
cle j, as

˙̂RI
j(t) = R̂I

j(t) S
(
ω̂ j(t)

)
. (3)

The problem addressed in this paper is the design of attitude
estimators for

(
RI

1,R
I
2,R

I
3

)
. Moreover, their respective errors

must converge to zero for almost all initial conditions. The esti-
mates of the relative attitudes,

(
R1

2,R
1
3,R

2
3

)
, result from the iner-

tial set, because these are defined by R1
2 = RI

1
TRI

2, R1
3 = RI

1
TRI

3,
and R2

3 = RI
2

TRI
3, respectively.

2.3. Attitude Reconstruction
The direction vector measurements and the inertial refer-

ences can be used to reconstruct both relative and inertial atti-
tudes of the formation by applying the deterministic algorithm

in (Cruz & Batista, 2019). The observers proposed in the sequel
are driven by such reconstructed inertial attitudes. Since this al-
gorithm is employed in the simulation section, it is summarized
here for the sake of completeness.

The basic idea is to use the formation symmetries to obtain
a set of candidates for the inertial attitude of the chief. Then,
comparing such candidates, one can find the correct attitudes,
because they must be consistent regardless of the variables used
in their construction. Consider the problem geometric con-
straint given as −d1/2 = R1

2d2/1 and define

x1 :=


d2/1−d1/2

∥d2/1−d1/2∥
, if d2/1 , d1/2

S(d1)d1/2

∥S(d1)d1/2∥
, if d2/1 = d1/2

.

It follows that −d1/2 = R
(
θ2,−d1/2

)
R (π, x1) d2/1 for any θ2 ∈

R. Hence, consider that

R1
2 = R

(
θ2,−d1/2

)
R (π, x1) . (4)

Then, the result of substituting (4) in the geometric constraint
given by IdT

1
Id2 = dT

1 R1
2d2 can be expressed as (Cruz & Batista,

2019)
ap12 = ac12 cos (θ2) + as12 sin (θ2) , (5)

where as12 , ac12 , and ap12 are scalar coefficients, which are asso-
ciated with the trigonometric constraints of the relation between
vehicles 1 and 2. The value of such coefficients are given by

as12 := dT
1 S

(
−d1/2

)
R (π, x1) d2

ac12 := dT
1 S

(
d1/2

)2 R (π, x1) d2

ap12 := dT
1 d1/2dT

1/2R (π, x1) d2 −
IdT

1
Id2 .

Solving the trigonometric equation in (5) results in

θ2 := atan2
(
as12 , ac12

)
± arccos

 ap12√
a2

s12
+ a2

c12

 . (6)

Since different candidates result from the different signs in (6),
then the relative attitude candidate is given as(

R1
2

)
X
= R

(
θ2,−d1/2

)
R (π, x1) ,

where X identifies the respective candidate. If d1 is transverse
to

(
R1

2

)
X

d2, then the respective inertial candidate results from
the TRIAD algorithm and is given by

(
RI

1

)
X

:= Id1dT
1 +

S
(

Id1

)
Id2

[
S (d1)

(
R1

2

)
X

d2

]T∥∥∥S
( Id1

) Id2
∥∥∥ ∥∥∥∥S (d1)

(
R1

2

)
X

d2

∥∥∥∥
+

S
(

Id1

)
S
(

Id1

)
Id2

[
S (d1) S (d1)

(
R1

2

)
X

d2

]T∥∥∥S
( Id1

) Id2
∥∥∥ ∥∥∥∥S (d1)

(
R1

2

)
X

d2

∥∥∥∥ .

The analogous relative candidate is obtained by considering the
analogous parameterization of R1

3 and the analogous parameters
x3 and θ4. Hence, it is given as(

R1
3

)
Y
= R

(
θ4,−d1/3

)
R (π, x3) .
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Again, the respective inertial candidate
(
RI

1

)
Y

results from the

TRIAD algorithm, but with the measurement pairs
(

Id1,d1

)
and(

Id3,
(
R1

3

)
Y

d3

)
instead.

From the comparison between the four candidates for RI
1,

the correct attitude is given by finding identical candidates, i.e.,
the candidate pair which results in the lowest value of a metric
given by

µ =

∣∣∣∣∣∣∣∣∣∣arccos


trace

((
RI

1

)T

X

(
RI

1

)
Y

)
− 1

2


∣∣∣∣∣∣∣∣∣∣ .

By construction and in the absence of noise, the solution yields
µ = 0, so

(
RI

1

)
X

should be equal to
(
RI

1

)
Y
. In the presence of

noise, the pair with the lowest µ is selected and averaged.
Finally, once the solutions for RI

1, R1
2, and R1

3 are avail-
able, the solutions for RI

2 and RI
3 follow immediately from

RI
2 = RI

1R1
2 and RI

3 = RI
1R1

3.
In general, there is a unique solution. Nonetheless, in spe-

cific configurations, there may be multiple solutions. Thus, in
the simulations, it is assumed that the configuration is such that
the deterministic algorithm gives a unique solution, see (Cruz
& Batista, 2020) for the characterization of the conditions of
the solution.

3. Observer Design

The ensuing attitude observer results directly from the appli-
cation of the Lagrange-d’Alembert principle of variational me-
chanics. It assumes that the inertial attitudes reconstructed from
the measurement set are available, which can be accomplished
with the algorithm described in the previous section. Since the
three observers are identical and driven by analogous variables,
then a single vehicle is considered throughout this section.

First, a Lagrangian function is constructed to represent
an energy-like function of the estimation errors. Then, the
Lagrange-d’Alembert principle applied to the sum of the first
variation of the action functional and a dissipation term gives
the dynamics of the observer feedback term. For readability,
the time dependence of the variables is omitted in this section.

3.1. Lagrangian

Consider the j-th vehicle of the formation. Its observer in-
ternal representation of the angular velocity is given by the dif-
ference between the true angular velocity and a feedback term,
ϕ j, as follows

ω̂ j = ω j − ϕ j . (7)

The associated kinetic energy-like function is defined as

T j :=
m j

2

(
ω j − ω̂ j

)T (
ω j − ω̂ j

)
=

m j

2
ϕT

j ϕ j ,

where m j is a positive weight constant. The inertial attitude
error matrix of vehicle j is given by

QI
j = RI

jR̂
I
j
T. (8)

The associated potential energy-like function is defined as

U j := p jtrace
(
I −QI

j

)
,

where p j is a positive weight constant. Finally, the Lagrangian
of the formation is given by

L j = T j − U j =
m j

2
ϕT

j ϕ j − p jtrace
(
I −QI

j

)
.

3.2. First variation of the action functional
The action functional is defined as the time integral of the

Lagrangian function. Thus, its first variation is given by

δs j =

∫ t f

t0
δL j dt =

∫ t f

t0
δT j − δU j dt , (9)

where t0 and t f are the initial and final time of estimation, re-
spectively. The estimated inertial attitude first variation of the
j-th vehicle is given as δR̂I

j = R̂I
jS

(
η j

)
, where η j is a perturba-

tion function. Moreover, from the attitude kinematics, the first
variation of the observer internal angular velocity is given by
δω̂ j = η̇ j+S

(
ω̂ j

)
η j, see (Izadi & Sanyal, 2014). Therefore, the

first variation of the kinematic term is expressed as

δT j = −m j

(
ω j − ω̂ j

)T (
η̇ j + S

(
ω̂ j

)
η j

)
,

or, equivalently,

δT j = −m jϕ
T
j

(
η̇ j + S

(
ω̂ j

)
η j

)
. (10)

The first variation of the potential term is given by

δU j = p jtrace
(
RI

jR̂
I
j
TS

(
η j

))
,

which, decomposing RI
jR̂

I
j
T into

RI
jR̂

I
j
T =

1
2

(
RI

jR̂
I
j
T + R̂I

jR
I
j
T
)
+

1
2

(
RI

jR̂
I
j
T − R̂I

jR
I
j
T
)

and noticing that the trace of the product between a symmetric
and skew symmetric matrix is zero, gives

δU j = p jtrace
(

1
2

(
RI

jR̂
I
j
T − R̂I

jR
I
j
T
)

S
(
η j

))
.

Lastly, from trace (S (a) S (b)) = −2aTb with a,b ∈ R3, it fol-
lows that

δU j = −p jS
−1(

RI
jR̂

I
j
T − R̂I

jR
I
j
T
)T
η j . (11)

3.3. Observer feedback dynamics
Consider a positive definite matrix D j and define a dissipa-

tion term as τT
j η j = ϕ

T
j D jη j. Then, applying the Lagrange-

d’Alembert principle to the sum of the action functional and
dissipation, i.e. δs j +

∫ t f

t0
τT

j η j dt = 0 , and recalling (9), (10),
and (11), yields∫ t f

t0

{
−m jϕ

T
j η̇ j − m jϕ

T
j S

(
ω̂ j

)
η j

+p jS
−1(

M j

)T
η j +

(
D jϕ j

)T
η j

}
dt = 0 ,
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where M j := R̂I
j
TRI

j−RI
j
TR̂I

j. Since the perturbation function is
zero at t0 and at t f , then integrating the first term by parts gives∫ t f

t0

{[
m jϕ̇ j +

(
m jS

(
ω̂ j

)
+ D j

)
ϕ j + p jS

−1(
M j

)]T
η j

}
dt = 0 .

Finally, the fundamental lemma of the calculus of variations,
yields an equation which encodes the estimator feedback term
dynamics. Thus, the observer equations are given as

˙̂RI
j = R̂I

jS
(
ω̂ j

)
(12a)

and

m jϕ̇ j = −
(
m jS

(
ω̂ j

)
+ D j

)
ϕ j − p jS

−1(
M j

)
. (12b)

3.4. Observer stability

The error dynamics are studied under the assumption that the
measurements are free of noise. In such conditions, the error is
shown to converge asymptotically to zero for almost all initial
configurations. Furthermore, the origin is locally exponentially
stable. The attitude observer performance in the presence of
sensor noise is assessed in the simulation section.

Take the time derivative of (8) and expand using (2) and (3).
Recalling (7), it follows that

Q̇I
j = RI

jS
(
ω j

)
R̂I

j
T + RI

j S
(
ω̂ j

)T
R̂I

j
T = RI

jS
(
ϕ j

)
R̂I

j
T .

or, equivalently, Q̇I
j = S

(
RI

jϕ j

)
QI

j. The observer feedback dy-
namics remain the same as in (12b), although their dependence
on QI

j is evidenced by some rearrangements. Hence, the error
system dynamics, considering the j-th vehicle, are given by

Q̇I
j = S

(
RI

jϕ j

)
QI

j (13a)

and

m jϕ̇ j=−p jS
−1(

RI
j
T
[
QI

j −QI
j
T
]

RI
j

)
−
[
m jS

(
ω̂ j

)
+ DI

j

]
ϕ j. (13b)

3.4.1. Equilibrium Points
The equilibrium points of the error system are found by sub-

stituting Q̇I
j = 0 and ϕ̇ j = 0 in (13), which yields

0 = S
(
RI

jϕ j

)
QI

j (14a)

and

0 = −p jS
−1(

RI
j
T
[
QI

j −QI
j
T
]

RI
j

)
−
[
m jS

(
ω̂ j

)
+ DI

j

]
ϕ j . (14b)

From (14a), ϕ j = 0. Therefore, it follows that (14b) becomes

S
−1(

RI
j
T
[
QI

j −QI
j
T
]

RI
j

)
= 0

which implies that
QI

j = QI
j
T , (15)

which is satisfied by all attitude error matrices with an angle
of 0◦ or 180◦, considering their Euler axis/angle representation

in (1). Hence, the error system is at the equilibrium when the
feedback term is zero and the error matrix is symmetric.

Next, recall the Euler axis/angle parameterization, consider
the axis and angle respectively given by e ∈ S2 and ϵ ∈ R, and
denote QI

j := R (ϵ, e). Then, rewrite (15) as

R (ϵ, e) = [R (ϵ, e)]T ,

or, equivalently, R (2ϵ, e) = I . It follows, from (1) and the dou-
ble angle trigonometric identities, that[

1 − cos2(ϵ) + sin2(ϵ)
] (

eeT − I
)

− 2 sin (ϵ) cos (ϵ) S (e) = 0 . (16)

As consequence of the Pythagorean identity, i.e.

sin2(ϵ) + cos2(ϵ) = 1 ,

it is verified that 1 − cos2(ϵ) + sin2(ϵ) = 2 sin2(ϵ). Hence, ap-
plying such relation to (16), gives

2 sin (ϵ) sin (ϵ)
(
eeT − I

)
− 2 sin (ϵ) cos (ϵ) S (e) = 0

or, equivalently,

sin (ϵ)
[
sin (ϵ)

(
eeT − I

)
− cos (ϵ) S (e)

]
= 0 . (17)

If sin (ϵ) = 0, then ϵ = kπ, k ∈ Z. Else, if sin (ϵ) , 0, then
sin (ϵ)

(
eeT − I

)
= cos (ϵ) S (e). However, the left hand side is

symmetric, whereas the right hand side is skew symmetric, and
both are different from zero, which means that this condition
cannot be satisfied. Therefore, the solution for (17) is ϵ = kπ,
k ∈ Z.

The equilibrium points can be represented in a more compact
form by recalling that trace

(
QI

j

)
= 1 + 2 cos (ϵ). Hence, for

ϵ = 0+2kπ, trace
(
QI

j

)
= 3 and for ϵ = π+2kπ, trace

(
QI

j

)
= −1.

Then, define

S j :=
{(

QI
j,ϕ j

)
|trace

(
QI

j

)
= 3, ϕ j = 0

}
, (18)

which is the desired equilibrium point (zero estimation error).
Define also the undesired equilibrium set as

U j :=
{(

QI
j,ϕ j

)
|trace

(
QI

j

)
= −1, ϕ j = 0

}
. (19)

The set of all equilibrium points is the union of both sets, which
is denoted as E j = S j ∪ U j.

3.4.2. Observer stability
The following theorem details the stability characteristics of

the observer.

Theorem 1. Consider the error system (13) and the equilib-
rium sets S j and U j, defined in (18) and (19), respectively. As-
sume that ω j is bounded. Then:

1. the set U j is forward invariant and unstable relative to
(13);

2. the set S j is locally exponentially stable; and
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3. the error converges to S j for almost all initial conditions
< U j.

Proof. First, consider the Lyapunov candidate function given
by

V (t) =
m j

2
ϕT

j ϕ j + p jtrace
(
I −QI

j

)
, (20)

whose time derivative is given as

V̇ (t) = ϕT
j

(
m jϕ̇ j

)
− p jtrace

(
Q̇I

j

)
,

or, using (13), expressed as

V̇ (t) = ϕT
j

[
−m jS

(
ω̂ j

)
ϕ j − p jS

−1(
M j

)
−DI

jϕ j

]
− p jtrace

(
RI

j S
(
ϕ j

)
R̂I

j
T
)
. (21)

Since ϕT
j S

(
ω̂ j

)
ϕ j = 0 and recalling the trace cyclic property,

(21) is given as

V̇ (t)=−ϕT
j p jS

−1(
M j

)
−ϕT

j DI
jϕ j−p jtrace

(
R̂I

j
T RI

jS
(
ϕ j

))
. (22)

Then, recalling the procedure to obtain (11), rewrite (22) as

V̇ (t) = −p jϕ
T
j S
−1(

M j

)
− ϕT

j DI
jϕ j + p jϕ

T
j S
−1(

M j

)
.

Finally, V̇ (t) = −ϕT
j DI

jϕ j ≤ 0 ,which implies that ϕ j is bounded
by the initial conditions of both ϕ j and Q j. Next, compute the
second time derivative of the Lyapunov function, which results
in

V̈ (t) =
2

m j
ϕT

j DI
j

[
m jS

(
ω j(t)

)
ϕ j + p jS

−1(
M j

)
+ DI

jϕ j

]
.

Since the difference between matrices in SO(3) is bounded, then
M j is bounded. Moreover, recall that ϕ j is bounded and ω j

is assumed to be bounded. Then, V̈ (t) is uniformly bounded,
which implies that V̇ (t) is uniformly continuous. Furthermore,
since V (t) ≥ 0 and V̇ (t) ≤ 0, it follows that V (t) converges to
a limit, for any finite initial condition. Then, it follows from
Barbalat’s lemma that V̇ (t) converges to zero (Khalil, 2002),
which in turn implies that ϕ j converges to zero. If

(
QI

j (t) , 0
)
<

E j, then the error system evolves towards a state with ϕ j , 0,
because ϕ̇ j , 0. Thus, E j = S j ∪ U j is the largest forward
invariant set.

Next, consider the linearization of the error dynamics about
S j. To that purpose, let QI

j ≈ S (x)+ I and ϕ j ≈ y, which yields[
ẋ

m jẏ

]
=

 0 RI
j

−2p jRI
j
T −m jS

(
ω j

)
− D j

 [xy
]
.

Similarly to the linearization about U j, apply the transformation
given by z = 1√

2p j
RI

jy. It follows that[
ẋ

m jż

]
=

[
0

√
2p jI

−
√

2p jI −RI
jD jR

I
j
T

] [
x
z

]
. (23)

Let ξ =
[
x
z

]
and B =

[
β1I 0
0 β2I

]
and consider the Lyapunov

candidate function

W (ξ) =
1
2
ξTBξ .

Therefore, its time derivative is given by Ẇ (t) = β1xTẋ+β2zTż.
Choose β1 = β2 = β > 0. Then, expanding the derivatives,
using (23), recalling that D j is positive definite, yields Ẇ (t) =
−ξTCTCξ ≤ 0, where

C (t) =

0 0
0
√
βD

1
2
j RI

j
T

 . (24)

Denote the linearized dynamics matrix in (23) by A2. Simi-
larly to the argument in (Khalil, 2002, Example 8.11), if the
pair (A2,C) is uniformly completely observable (UCO), then
A2 is globally exponentially stable and therefore the error sys-
tem (13) is locally exponentially stable in (I, 0). To show that
the pair (A2,C) is UCO, let

L (t) =
[

C (t)
C (t) A2 (t) + Ċ (t)

]
,

where

Ċ (t) =

0 0
0
√
βD

1
2
j S

(
ω j

)T
RI

j
T

 (25)

Thus, omitting the time dependence, it follows that

LTL = CTC+ĊTĊ+ĊTCA2+(CA2)T Ċ+(CA2)T CA2. (26)

Denote (26) as the block matrix

LTL =

[
L11 L12
LT

12 L22

]
. (27)

Then, from (23), (24), and (25) and after some rearrangements,
each block entry is respectively given as

L11 = 2p jβRI
jD jR

I
j
T ,

L12 = β
√

2p jRI
jD jF jRI

j
T ,

and L22 = βRI
jD jR

I
j
T + βRI

jF
T
j D jF jRI

j
T ,

where F j =
[
S
(
ω j

)
+ D j

]
. Since D j is positive definite, then

L11 is positive definite. Moreover, the Schur complement with
respect to L11, hereby denoted by L/L11 = L22 − LT

12L−1
11 L12,

which noticing that L−1
11 =

1
2p jβ

RI
jD
−1
j RI

j
T and after some rear-

rangements yields

L/L11 =βRI
jD jR

I
j
T + βRI

jF
T
j D jF jRI

j
T

− βRI
jF

T
j D jD

−1
j D jF jRI

j
T .

Then, L/L11 = βRI
jD jR

I
j
T , which means that the Schur com-

plement is positive definite as well. Therefore, (27) is positive
definite and the pair (A2,C) is UCO (Bristeau et al., 2010, The-
orem 4). This concludes the second part of the proof.

Finally, consider a point
(
Qu,ϕu

)
∈ U j, which, recalling

(19), implies that the value of the Lyapunov function defined
by (20) for any such point is V (t) = 4p j. Moreover, any neigh-
borhood of

(
Qu,ϕu

)
includes states for which V (t) < 4p j, for

instance by varying Q j, while fixing ϕu = 0. Any trajectory
with such initial conditions does not converge to U j because
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V̇ (t) ≤ 0 and therefore the set U j is unstable relative to (13).
There are, however, a set of specific trajectories that converge to
U j along the center stable manifold (Khalil, 2002). From classi-
cal center manifold theory, those trajectories are zero-measure
in the overall space and since U j is a zero-measure subset of
SO(3) × R3, then the proof is complete.

4. Discrete-time observer

The observer implementation uses a discrete-time version of
the observer derived in the previous section. This version is a
Lie group variational integrator (LGVI) and assumes that the
measurements are obtained at an appropriate constant rate in
discrete-time. The stability properties are the same for both
versions of the observer since LGVI maintain the properties of
variational mechanics (Izadi & Sanyal, 2014).

Let the subscript k denote the k-th time instant in a set of
N equally spaced sub-intervals, with time step denoted by ∆t.
The derivation of the discrete-time filter relies firstly on the dis-
cretization of the Lagrangian, which is given by

L j k = T j k − U j k =
m j

2
ϕT

j kϕ j k − p jtrace
(
I −QI

j k

)
.

Next, consider the discrete attitude kinematics given as

˙̂RI
j k+1 = R̂I

j kexp
[
∆tS

(
ω̂ j k

)]
.

Then, the first variation of the discrete estimates for the attitude
and angular velocity are respectively given by (Izadi & Sanyal,
2014)

δR̂I
jk = R̂I

jkS
(
η jk

)
and

∆tδω̂ j k = η j k+1 − exp
[
−∆tS

(
ω̂ j k

)]
η j k .

Applying the discrete formulation of the Lagrange-d’Alembert
principle (Marsden & West, 2001) to the sum of the discrete
action functional and a discrete damping term results in

δs j k + ∆t
N−1∑
i=0

τT
D j kη j k = 0 ,

Finally, considering the first variation of the discrete La-
grangian and the damping term τD j k+1 = D jω j k, the discrete-
time version of the filter is expressed as

˙̂RI
j k+1 = R̂I

j kexp
[
∆tS

(
ω̂ j k

)]
(28a)

and

m jϕ̇ j k+1 = exp
[
−∆tS

(
ω̂ j k

)] [(
m jI − ∆tD j

)
ϕ j k

−∆tp jS
−1(

M j k+1

)]
, (28b)

with M j k+1 = R̂I T
j k+1RI

j k+1 − RI T
j k+1R̂I

j k+1, and ω̂ j k = ω j k − ϕ j k.
For further details about the derivation of these equations, see
(Izadi & Sanyal, 2014).

5. Simulation

The performance of the proposed observer was assessed in
the presence of sensor noise using a series of numerical sim-
ulations. First, a nominal configuration and maneuver were
defined and implemented, considering the assumptions of the
observer design. Then, a set of 1000 Monte Carlo simulations,
whose initial conditions were perturbed relative to the nominal
configuration, were implemented computationally to further as-
sess the observer stability in a larger set of configurations.

Since each vehicle employs its own attitude observer, the
nominal initial configuration is different for each vehicle, thus
showing different aspects of the observer performance. There-
fore, the initial attitude error for vehicle 1 starts close to the
origin. The initial attitude error for vehicle 2 starts far from the
origin, but still in the stable manifold S 2. Finally, the initial
attitude error for vehicle 3 starts at the unstable manifold U3.

This section starts with the description of the measurement
and motion models. Then, the nominal initial configuration and
maneuver are defined, followed by the description of the input
perturbation models and respective parameters. Next, the simu-
lation setup is defined and, finally, the results are given respec-
tively for a single nominal simulation and for a set of perturbed
configurations.

5.1. Measurement model

The line of sight and inertial reference measurements follow
the model of the large field of view focal plane sensor (Cheng
et al., 2006). In this model, the sensor gives two coordinates,
m = [χ, ψ], whose measurement is expressed as

mm = m + n , (29)

i.e. the sum of the true value with a zero mean random Gaussian
noise, n ∼ N

(
0,PF

)
. The covariance in the focal plane is given

by

PF =
σ2

d

1 +
(
χ2 + ψ2)


(
1 + χ2

)2
(χψ)2

(χψ)2
(
1 + ψ2

)2

 ,
where σd is the standard deviation of the focal coordinates. The
transformation from the focal coordinates into the sensor frame
unit vector is given as

sd =
1√

1 + χ2 + ψ2

[
χ, ψ, 1

]T ,

where the focal length is assumed to be equal to one. The an-
gular velocity measurement follows the discrete-time unbiased
rate gyro model given by (Markley & Crassidis, 2014)

ω jm = ω j + σωj∆t−
1
2 N j , (30)

where ω jm is the angular velocity measurement, σωj is the stan-
dard deviation of the noise, and N j ∼ N (0, I).
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5.2. Motion model

The true values of the attitude follow the kinematics (2).
Moreover, the model of the dynamics for a rigid body, which
can represent spacecraft in flight, determines the ground truth
of the angular velocity for each vehicle. Considering vehicle j,
such model is given by

ω̇ j = J−1
j

(
τF j − S

(
ω j

)
J jω j

)
, (31)

where τF j represents an external moment applied to each vehi-
cle given in N m−1, and J j denotes the matrix of the moment of
inertia given in kg m2.

5.3. Nominal initial conditions

The nominal initial configuration of the formation considers
the inertial attitudes given by the identity matrix, i.e.

RI
1 = RI

2 = RI
3 = I .

The inertial references are constant and given by

Id1 =

100
 , Id2 =

010
 , and Id3 =

010
 ,

whereas the inertial relative directions are initially given by

Id1/2 = RI
1d1/2 =


0
1
√

2
1
√

2

 and Id1/3 = RI
1d1/3 =

001
 .

Finally, the initial angular velocities are given, in rad/s, by

ω1 = ω2 = ω3 = [0.1 0.1 0.1]T .

5.4. Nominal maneuver

It is assumed that the vehicles can readjust their relative po-
sitions. The nominal maneuver affects only the relative position
of vehicle 2. Thus, the value of Id2 is given by the following
update equation

Id2 k+1 = R (α1,n1) Id2 k (32)

with α1 = ∆t π
240 and n1 =

[
0 − 1

√
2

1
√

2

]T
. The subscript k in-

dicates the current time instant and ∆t is the simulation time
step.

This maneuver intentionally avoids the special cases of the
formation described in (Cruz & Batista, 2020), because these
would result in a set with multiple solutions for the recon-
structed attitudes driving the observers.

In the inertial frame, only the vectors which measure the rel-
ative direction between vehicles 1 and 2 vary, while all other
vectors are constant in that frame. The nominal evolution of
Id1/2 is depicted in Fig. 2. Note that the orange and green lines
are overlapped because the second and third elements of Id1/2
have the same initial values and the maneuver maintains Id1/2
in the plane where both elements are identical.
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Fig. 2. Evolution of Id1/2

5.5. Perturbed initial configuration model

The Monte Carlo simulations consider a large set of trials
where the initial configuration is perturbed in relation to the
nominal initial conditions.

The initial values of Id1, Id2, Id3, Id1/2, and Id1/3, which
are three-dimensional unit vectors, are perturbed by a small ro-
tation which changes their direction. Denote the unit vector of
the nominal initial configuration as nn. Then, the perturbed unit
vector is given as

n = R
(
δθ,

S (nn) r
S (nn) r

)
nn , (33)

with δθ ∼ N (0, σθ) and r denoting a random unit vector.
The initial values of ω1, ω2, and ω3, which are three-

dimensional vectors, are perturbed at two levels. Denote the
vector of the nominal initial configuration as vn. Then, the per-
turbed vector is given by

v = s R
(
δθ,

S (vn) r
S (vn) r

)
vn , (34)

with δθ ∼ N (0, σθ), s ∼ N (0, σs), and r denoting a random
unit vector.

The initial values of RI
1, RI

2, and RI
3, which are rotation ma-

trices, are perturbed at the level of the angle and axis. De-
note the rotation angle of the nominal initial configuration as
θn and the rotation axis of the nominal initial configuration as
nn. Then, the perturbed rotation is given as

R = R
(
θn + δθ,R

(
δψ,

S (nn) r
S (nn) r

)
nn

)
, (35)

with δθ ∼N (0, σθ), δψ ∼N
(
0, σψ

)
, and r denoting a random

unit vector.
The perturbation parameters were chosen considering the

observer assumptions. Thus, the angular velocities must be
bounded and the degenerate attitude configurations must be
avoided. The standard deviation values for each variable are
given in Tables 1 and 2.
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σθ σψ
[rad] [rad]

RI
1

π
2

π
4

RI
2

π
2

π
4

RI
3

π
2

π
4

σθ σs
[rad]

ω1
π
6 0.1

ω2
π
6 0.1

ω3
π
6 0.1

Table 1. Perturbed initial attitude and angular velocity standard deviations

σθ
[rad]

Id1
π
20

Id2
π
20

Id3
π
20

σθ
[rad]

Id1/2
π
20

Id1/3
π
20

Table 2. Perturbed inertial measurements standard deviations

5.6. Simulation setup

For all trials, the vehicles are assumed identical and cylindri-
cal. Therefore, the moment of inertia is a diagonal matrix with
the entries respectively given by m

12

(
3r2 + h2

)
, m

12

(
3r2 + h2

)
,

and m
2 r2, where m = 120 kg, h = 2 m, and r = 1 m. More-

over, the external torque applied to each vehicle is a sinusoidal
signal, where each component is given as

τF = 0.5 sin ( f∆t)

in N.m, with f=1rad s−1, which ensures that the angular veloc-
ity is bounded and thus satisfying all the assumptions, because
its measurements were assumed unbiased. The true values of
the components of ω1, which are identical to the components
of ω2 and ω3, are depicted in Fig. 3.
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Fig. 3. Evolution of ω1

The ground truth of all measurements used in the attitude
reconstruction must be defined for each time instant. Thus, it
is assumed that the sensors have an appropriate sampling rate.
For simplicity, the vision-based measurements are assumed to
be taken by a focal plane sensor facing the body-fixed frame
axes orthogonal to the highest component of the vector. The
standard deviation of the several focal plane sensors is identical

and given by σd =17×10−6 rad, whereas the standard deviation
of the rate gyros is σω j =4.8×10−6 rad/s.

The initial proximity of the errors to the origin is controlled
by the initial estimates of the observer. Therefore, the initial
attitude estimates are given, respectively, by

R̂I
1(t0) =

0 0 −1
0 1 0
1 0 0

 ,

R̂I
2(t0) =


1
√

2
0 − 1

√
2

0 1 0
− 1
√

2
0 − 1

√
2

 ,
and

R̂I
3(t0) =

1 0 0
0 −1 0
0 0 −1

 .
The initial estimates of the angular velocities for ω̂1 and ω̂2 are
the zero vector, which means that the respective initial errors
are ϕ1 (t0) = ω1(t0) and ϕ2 (t0) = ω2(t0). Since the third vehicle
estimate is in manifold U3, then ϕ3 (t0) = 0, or equivalently
ω̂3(t0) = ω3(t0). Moreover, the observer constant parameters
are set to m j = 1.5, p j = 1, and D j = I.

The simulation interval is 60 seconds with a time step of 0.1
seconds. In each iteration, the true values are updated according
to (2), (31), and (32). Then, the vision sensor and rate gyro mea-
surements are generated following the noise models described
in (29) and (30). Next, from the vision-based measurements,
the deterministic algorithm reconstructs each attitude in the for-
mation. Finally, the attitude estimates are computed with (28),
first the kinematics yield new attitude estimates and then the
new feedback term is updated, by solving the respective equa-
tion numerically. After the simulation is complete, the attitude
estimates are processed and the attitude errors, in matrix form,
computed from (8). Then, the error matrices are transformed
into the principal angle of the attitude error by

ϵ j := arccos

 trace
(
QI

j

)
− 1

2


with j = 1, 2, 3 and the values of ϵ j in the interval [0 , π].

5.7. Monte Carlo setup
The Monte Carlo numerical implementation considers a set

of 1000 trials, in which the initial configuration is perturbed
according to (33), (34), and (35), with the standard deviations
presented in the Tables 1 and 2. Each trial follows the procedure
given in the simulation setup description and the maneuver is
always given by the update in (32).

5.8. Simulation results
Two sets of results are considered in this analysis: one with

the nominal initial configuration results and another with the
Monte Carlo trials results. The attitude errors are represented
by their principle angle as an indication of their magnitude. An-
other error considered is the norm of the feedback parameter ϕ j,
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which informs on the discrepancies of the angular velocity er-
rors. The nominal initial configuration attitude errors, for all
three vehicles, are given in Fig. 4, while the associated feed-
back parameters are given in Fig. 5. In the Monte Carlo experi-
ment, both the reconstructed attitude error and the observer es-
timate error are considered. The respective results for all 1000
trials are condensed into their mean value relative to each time
instant. The associated standard deviation is computed as well,
which gives a more complete statistical representation. Both
are depicted in Figs. 6, 7, and 8, where the line represents the
mean and the shaded area delimits the standard deviation from
the mean of the respective instant of time.

The results for the nominal initial configuration, in Figs. 4
and 5, show that vehicle 3 converges to the correct attitude, even
though it is initially in the unstable equilibrium set U3. Another
possible observation, is that the feedback terms converge to a
value within a given error of the zero vector due to sensor noise.
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Fig. 4. Nominal simulation attitude errors
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Fig. 5. Nominal simulation angular velocity errors

The results for the Monte Carlo trials, in Figs. 6, 7, and 8,
show that the observer errors tend to a smaller error than the er-
ror of the reconstructed attitude. Thus, the observer is using the

rate gyro information to filter the reconstructed attitude errors
and improve the accuracy of the estimation. Secondly, from
the shaded areas, which are representing the standard deviation
relative to the mean, the observer attitude errors do not vary
significantly from the mean, despite the varying initial configu-
ration of each trial. More importantly, the sum of the standard
deviation and mean of the observer are lower than the analo-
gous value of the reconstructed attitude, which reinforces the
conclusions made regarding the respective mean values.

To summarize, if all assumptions are satisfied, that is the an-
gular velocity is bounded and unbiased, while the reconstructed
attitude exists and is unique, then the observer estimate errors
converge to close to the origin. Moreover, these errors are
smaller than the errors from the sensor attitude reconstruction,
which indicate that the observer is filtering some of the noise of
those sensors by using the rate gyros.

6. Conclusions

A reconstructed attitude was used to design an attitude ob-
server, based on the Lagrange-d’Alembert principle of varia-
tional mechanics. The observer error is locally exponentially
stable and converges to the origin for almost all initial con-
ditions. The remaining equilibrium points are unstable and a
zero measure subset of the domain. The observer was applied
to the three-vehicle heterogeneous formations and tested using
numerical simulations, where the performance of the solution
with sensor noise was assessed. It was shown that the estimates
in the unstable equilibrium manifold converge to the true atti-
tude as well. Moreover, the numerical implementation showed
that the observer errors are lower than the attitude reconstruc-
tion errors and thus the observer filters some of the errors in the
attitude reconstruction. The application to the three vehicle het-
erogeneous formation is limited to cases where the attitude can
be reconstructed unambiguously, because large errors in such
variables result in the divergence of the results from the zero
error estimates, because the observer is driven directly by the
reconstructed attitude. This is not a limitation of the observer.
Instead, it is an intrinsic theoretical limitation of the problem
framework, as discussed in (Cruz & Batista, 2020).
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