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ABSTRACT
This paper presents a novel decentralized navigation system based on bearing mea-
surements for tiered vehicle formations. In the proposed framework, some vehicles
have access to measurements of their own position, whereas others have access to
bearing measurements to one or more neighboring vehicles. Depth measurement
may also be available. Local observers for the position and fluid velocity are de-
signed based on the derivation of an equivalent observable linear time-varying sys-
tem, thus yielding globally exponentially stable error dynamics. The local observers
rely on local measurements, as well as limited communications between the vehicles.
The stability of the system as a whole is analyzed by studying the robustness of
the local observers to exponentially decaying perturbations. Thorough Monte Carlo
simulations are presented and discussed to compare the performance of the proposed
solution with the extended Kalman filter, the unscented Kalman filter, and with the
Bayesian Cramr-Rao bound.

KEYWORDS
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1. Introduction

The use of formations is advantageous in many applications, see for example Healey
(2001), Kopfstedt, Mukai, Fujita, and Ament (2008), and Pack, DeLima, Toussaint,
and York (2009), where vehicle formations are considered in surveillance and local-
ization. While centralized control and navigation systems are the most widely used
due to their conceptual simplicity, decentralized solutions have many advantages. The
most obvious of them is that the formation does not depend on a central node, which
can compromise the whole application. Another disadvantage of centralized solutions
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is the need to communicate with each element of the formation. However, in underwa-
ter applications, communications are limited. Decentralized solutions may help coping
with this issue. In Fonti, Freddi, Longhi, and Monteri (2011); Joordens and Jamshidi
(2010); Stilwell and Bishop (2000); Vaccarani and Longhi (2009), examples of decen-
tralized solutions for underwater applications are proposed.

Due to electromagnetic waves attenuation, GPS systems are not available in under-
water applications. As such, it is necessary to develop alternative navigation systems,
such as the ones proposed in Techy, Morgansen, and Woolsey (2011) and Whitcomb,
Yoerger, and Singh (1999). Most of the solutions available in the literature are based
on range measurements. However, it is possible to develop navigation systems based
on bearing measurements. An ultra-short baseline acoustic positioning system, a sen-
sor that provides bearing measurements, is developed and discussed in detail in Reis,
Morgado, Batista, Oliveira, and Silvestre (2016). A lot of work has been done with
regard to navigation using bearing measurement, such as a study on the observability
issues of target motion analysis based on angle measurements, which was developed in
Hammel and Aidala (1985). Particle filters based on bearing measurements are pro-
posed in Zhang and Ji (2012) and Brehard and Cadre (2007), while in Zhao, Wang,
He, Yao, and Li (2014) a square cubature Kalman filter is presented.

In this paper, a novel decentralized filter for vehicle formations operating underwater
is proposed. The formations are assumed to be tiered and acyclic, with the vehicles of
the top tier having access to their own position due to, for example, the availability of
a long baseline system or GPS, for the case of surface vehicles. In the rest of the tiers,
vehicles measure bearings and have communication with vehicles in the upper tier.
Local state observers, capable of estimating the vehicle position and the surrounding
fluid velocity, are designed. These local observers have access to bearing measurements
and positions estimates communicated from the vehicles in the tier above. They also
have access to several local measurements, such as attitude angles, velocity relative
to the surrounding fluid and, in some cases, depth. Three different cases of local
observers are considered: i) when one bearing and depth are available; ii) when one
bearing is available but depth is not; and iii) when two or more bearings, but no
depth, are available. The proposed framework is of high applicability, e.g. when the
vehicles are distributed in tiers in the water column and/or the horizontal plane, with
limited communications and line-of-sight restrictions. In these scenarios, it is possible
for vehicles that are in adjacent tiers to communicate, but not vehicles farther apart.

In Viegas, Batista, Oliveira, and Silvestre (2016), continuous-time decentralized
range-based navigation systems are proposed for tiered acyclic formations. The lo-
cal observers are based on a previous solution developed by the authors, see Batista,
Silvestre, and Oliveira (2011), whereby the state is redefined such that equivalent lin-
ear time-varying systems are obtained, thus yielding GES error dynamics. To ensure
that the decentralized system as a whole exhibits globally exponentially stable (GES)
error dynamics, the robustness of the local observers to exponentially decaying pertur-
bations on the position estimates received through communication is analyzed. This
paper proposes a similar solution but based on bearing measurements instead of range
measurements. Bearing measurements also lead to a system with nonlinear outputs.
For such systems, the traditional solution is an extended Kalman filter (EKF). How-
ever, that does not offer any guarantee of stability. To obtain local observers with guar-
antees of GES error dynamics, an artificial output based on the bearing measurement
can be used instead of the bearing itself, as in Batista, Silvestre, and Oliveira (2013b),
where a continuous-time navigation system for single vehicles based on single bearing
measurements is proposed. Since the bearing measurements and the communications
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are not available at a frequency high enough to consider a continuous-time system,
the navigation system designed herein considers discrete-time kinematics. In Batista,
Silvestre, and Oliveira (2013a), a similar solution to the one proposed in Batista et
al. (2013b) is developed, but in a discrete-time context instead. In Batista, Silvestre,
and Oliveira (2015), the previous work is extended to the case where multiple bearings
are available. The present paper extends the previous results, from single vehicles to
tiered formations. This is, to the best of the authors’ knowledge, the first time that co-
operative decentralized navigation systems based on bearing measurements for tiered
formations are proposed, with guarantees of global exponential stability.

Monte Carlo simulations are performed to compare the performance of the proposed
solution with the EKF and the unscented Kalman filter (UKF). Also, the Bayesian
Cramr-Rao Bound (BCRB), which gives the best achievable performance for an un-
biased observer, is computed. The average error and root-mean-square error (RMSE)
are presented to assess the existence of bias in the observers and the performance both
in terms of convergence speed and steady-state variance. Also, an example where the
proposed solution is the only converging is presented, which demonstrates the advan-
tage of theoretical guarantees of stability over EKF- and UKF-based solutions, see e.g.
Hu, Gao, and Zhong (2015), at no additional computational cost.

Previous work by the authors can be found in the 6-pages conference paper Santos
and Batista (2020). The present work encompasses a comprehensive derivation of the
solution. In addition to the proofs, which were omitted in the conference version,
this paper also approaches the case where only one bearing measurement is available.
Furthermore, it compares the performance of the proposed solution with the ones of
the EKF, the UKF, as well as the BCRB, by resorting to Monte Carlo simulations.
Besides this extensive comparison, the paper also introduces an example where only
the proposed solution converges.

1.1. Notation

Throughout the paper, the symbol 0 denotes a matrix of 0s of proper dimensions
and In denotes the n × n identity matrix. A block diagonal matrix is represented by
diag(A1, ...,An). The special orthogonal group is denoted by SO(3) := {X ∈ R3×3 :
XTX = I ∧ det(X) = 1} and the set of unit vectors is defined as S(2) := {x ∈ R3 :
∥x∥ = 1}. For x ∈ R3, xx, xy and xz denote the first, second, and third component of
x, respectively. The transpose operator is defined as (.)T .

2. Problem statement

Consider a formation of N vehicles, indexed from 1 to N . All the vehicles are evolving
in a fluid whose velocity is assumed to have a time-invariant spatial distribution.
Moreover, it is assumed that the velocity of the vehicles is small enough such that the
velocity of the fluid can be considered constant for each vehicle. Since the vehicles may
be operating in different regions of the space, it is assumed that the velocity of the
fluid may differ from vehicle to vehicle. As so, vfi(t) ∈ R3 denotes the fluid velocity
around vehicle i, expressed in a local inertial frame, {I}. The position of the vehicle
i, expressed in {I}, is denoted by pi(t) ∈ R3.

Each vehicle is moving with a velocity relative to the fluid, measured by a relative
velocity sensor, such as a Doppler velocity log (DVL), and denoted by vi(t) ∈ R3,
expressed in the body frame, {Bi}. Each vehicle is also equipped with an attitude and
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heading reference system (AHRS) which provides a rotation matrix, Ri(t) ∈ SO(3),
from {Bi} to {I}.

The kinematics of vehicle i are given by{
ṗi(t) = vfi(t) +Ri(t)vi(t)

v̇fi(t) = 0
.

The formation is assumed to be organized in a tiered topology and each vehicle has
access to either:

• An absolute position measurement, provided by, for example, GPS or a long
baseline acoustic positioning system, if they are in the first tier; or

• Bearing measurements and position estimates of one or more vehicles in the tier
above and, in some cases, depth measurements.

The focus of this paper is on the second case, since the position is available in the first
one. In the second case, the outputs are available at discrete-time and are given bydij(k) = RT

i (tk)
pj (tk)− pi (tk)

∥pj (tk)− pi (tk)∥
, j ∈ Di

hi(k) = pz
i (tk) , if depth available,

,

where Di is the set of vehicles to which vehicle i has bearing measurements and, to
each discrete-time k, corresponds a continuous-time tk.

From now on, and unless specified otherwise, it is considered

dij(k) =
pj (tk)− pi (tk)

∥pj (tk)− pi (tk)∥
, j ∈ Di, (1)

since this simplifies the computations. This is done without loss of generality since the
matrix Ri (tk) is available and invertible. For simulation purposes, the original bearing
measurement is used.

Because the communication and the bearing measurements between vehicles are
only available at low frequency, the system must be discretized, which leads to

pi(tk+1) = pi (tk) + Tvfi (tk) + ui(k)

vfi(tk+1) = vfi (tk)

dij(k) =
pj (tk)− pi (tk)

∥pj (tk)− pi (tk)∥
, j ∈ Di

hi(k) = pz
i (tk) , if depth available

, (2)

where T is the sampling period and ui(k) is given by

ui(k) =

∫ tk+1

tk

Ri(t)vi(t)dt. (3)

The problem addressed in this paper is that of designing a decentralized observer,
with globally exponentially stable error dynamics, for the position and local fluid ve-
locity of each vehicle, pi and vfi, respectively. The decentralized observer is composed
of local observers, each one with access to the local measurements described before.
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3. Local observer design

Depending on the available measurements, the design of a local observer for (2) differs.
Three cases are discussed: i) when one bearing and depth are available; ii) when two
or more bearings are available; and iii) when one bearing without depth is available.
The first and third cases are analyzed in detail while, in the second, results obtained
in Batista et al. (2015) are used. From now on, the study will be focused on the design
of the local observer for vehicle i. To simplify the notation, the index i is omitted from
this point onward, resulting in the system

p(tk+1) = p (tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

dj(k) =
pj (tk)− p (tk)

∥pj (tk)− p (tk)∥
, j ∈ D

h(k) = pz (tk) , if depth available

. (4)

3.1. Artificial output

The dynamic system (4) is nonlinear due to the bearing outputs. To address this issue
and obtain a linear time-varying (LTV) system, the bearing outputs are replaced by
artificial ones. First, note that

dj(k)d
T
j (k)dj(k) = dj(k)

since dj(k) is a unit vector, from which it is possible to write

(I− dj(k)d
T
j (k))dj(k) = 0. (5)

Substituting the last term dj(k) of (5) using the third equation of (4) leads to(
I− dj(k)d

T
j (k)

)
(pj (tk)− p (tk)) = 0.

From this, zj(k) ∈ R3 is defined as

zj(k) :=
(
I− dj(k)d

T
j (k)

)
pj (tk)

=
(
I− dj(k)d

T
j (k)

)
p (tk) .

This quantity is known since (I − dj(k)d
T
j (k))pj (tk) can be computed using known

measurements. Also, because dj(k) is a known measurement, zj(k) is linear on the
state p(k). Replacing dj(k) by zj(k) in (4) yields

p(tk+1) = p (tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

zj(k) = (I− dj(k)d
T
j (k))p (tk) , j ∈ D

h(k) = pz (tk) , if depth available

. (6)
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This is an LTV system and can be written in the form{
x(k + 1) = Akx(k) +Bku(k)

y(k) = Ckx(k)
,

where

x(k) =
[
pT (tk) vT (tk)

]T ∈ R6,

and y(k) is the output, corresponding to the stacked measurements zj(k), j ∈ D, and
the depth measurement, when available.

3.2. Observability

3.2.1. One bearing and depth

When studying the system with only one bearing available, the index j will be omit-
ted in dj(k). The state matrices when depth and only one bearing measurement are
available and given by

Ak =

[
I3 T I3
0 I3

]
∈ R6×6, Bk =

[
I3
0

]
∈ R6×3,

Ck =

[
I3 − d(k)dT (k) 0

eT3 0

]
∈ R4×6,

with e3 := [0 0 1]T .
The following theorem addresses the observability of this system.

Theorem 3.1. The system (6) with depth and only one bearing available is observable
on the interval [ka, ka + 2] if and only if dz (ka) ̸= 0 and dz (ka + 1) ̸= 0.

Proof. The system is observable on [ka, ka + 2] if and only if the observability matrix
O (ka, ka + 2) has rank equal to the number of states. The proof follows by showing
that is the case. The observability matrix is given by

O (ka, ka + 2) =

[
Cka

Cka+1Aka

]
∈ R8×6.

The rank condition on the observability matrix is equivalent to state that the only
solution of

O (ka, ka + 2) c = 0
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is c = 0. Considering c = [cT1 cT2 ]
T , with c1, c2 ∈ R3, this can be rewritten as

(
I− d (ka)d

T (ka)
)
c1 = 0

cz1 = 0(
I− d (ka + 1)dT (ka + 1)

)
(c1 + Tc2) = 0

cz1 + Tcz2 = 0

. (7)

The sufficiency of the conditions of the theorem is shown by direct proof. Suppose
dz (ka) ̸= 0 and dz (ka + 1) ̸= 0. Next, it is shown that the only solution for (7) is
c = 0. The first equation of (7) allows to conclude that c1 = αd (ka), α ∈ R. Since
dz (ka) ̸= 0 and cz1 = 0, it must be α = 0 and thus c1 = 0. Then, the last two equations
of (7) become {

(I− d (ka + 1)dT (ka + 1))c2 = 0

cz2 = 0
.

Following the same steps, it can be concluded that c2 = 0. This concludes the proof
of sufficiency. The proof of necessity follows by contraposition. Suppose that the
conditions of the theorem are not met. This may happen because dz (ka) = 0 or
dz (ka + 1) = 0. In the first case, take

c =

[
d (ka)

− 1
T d (ka)

]
.

This nonzero c fulfils (7), which makes the system not observable. Suppose now that
dz (ka + 1) = 0 and take

c =

[
0

d (ka + 1)

]
.

This nonzero c also fulfils (7), which implies that the system is not observable, thus
concluding the proof of necessity.

Remark 1. The conditions of the theorem are easy to achieve, considering the tiered
topology of the formations. If the tiers are related to the vertical spacial distribution,
being any tier deeper than the upper tier, then these conditions are always met. If the
conditions are not met during a finite interval of time, state observers may diverge.
However, once the observability conditions are satisfied again, state observers will
converge again. Notice also that the system may be observable for longer time intervals
even if this particular observability condition is not met, making using, for instance,
of the richness of the trajectory, as detailed in Section 3.2.3.

3.2.2. Multiple Bearings

When more than one bearing is available but there is no depth measurement, the state
matrices are given by

Ak =

[
I3 T I3
0 I3

]
∈ R6×6, Bk =

[
I3
0

]
∈ R6×3,
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Ck =

I3 − d1(k)d
T
1 (k) 0

...
...

I3 − dL(k)d
T
L(k) 0

 ∈ R3L×6,

where L is the number of vehicles in D. This system has been studied in Batista et al.
(2015), from where the following theorem can be used.

Theorem 3.2. The system (6) with more than one bearing and no depth measurement
is observable on the interval [ka, ka + 2] if and only if there exist m,n, l, p ∈ {1, ..., L}
such that

dm (ka) ̸= α1dn (ka)

and

dl (ka + 1) ̸= α2dp (ka + 1)

for all α1, α2 ∈ R.

Remark 2. To fulfill the condition of the theorem, even if only two bearings are
available, it is enough that the vehicle of the system and the two vehicles to which the
bearings are measured are not aligned. Even though this might not be the case, both
conditions are not hard to achieve. Notice also that the present theorem considers two
consecutive time instants, which is the most strict case. Nevertheless, observability can
be achieved over longer periods, with different directions over non-consecutive discrete
time instants.

3.2.3. One bearing without depth

When only one bearing is available and there is no depth measurement, the state space
matrices are given by

Ak =

[
I3 T I3
0 I3

]
∈ R6×6, Bk =

[
I3
0

]
∈ R6×3,

Ck =
[
I3 − d(k)dT (k) 0

]
∈ R3×6.

The following theorem addresses the observability of this system.

Theorem 3.3. The system (6) with only one bearing available is observable on the
interval [ka, ka + 3] if and only if d (ka), d (ka + 1), and d (ka + 2) are linearly inde-
pendent.

Proof. The system is observable on [ka, ka + 3] if and only if the observability matrix
O (ka, ka + 3) has rank equal to the number of states. The proof follows by showing
that is the case. The observability matrix is given by

O (ka, ka + 3) =

 Cka

Cka+1Aka

Cka+2Aka+1Aka

 ∈ R9×3.
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The rank condition on the observability matrix is equivalent to state that the only
solution of

O (ka, ka + 3) c = 0

is c = 0. Considering c = [cT1 cT2 ]
T , with c1, c2 ∈ R3, this can be rewritten as

(I− d (ka)d
T (ka))c1 = 0

(I− d (ka + 1)dT (ka + 1))(c1 + Tc2) = 0

(I− d (ka + 2)dT (ka + 2))(c1 + 2Tc2)

. (8)

The sufficiency of the conditions of the theorem is shown by direct proof. Suppose
d (ka), d (ka + 1), and d (ka + 2) are linearly independent. Next, it is shown that the
only solution of (8) is c = 0. To that purpose, notice that (8) allows to conclude that

c1 = α1d (ka)

c1 + Tc2 = α2d (ka + 1)

c1 + 2Tc2 = α3d (ka + 2)

, (9)

for α1, α2, α3 ∈ R. Adding the first equation of (9) to the third and subtracting the
second equation twice leads to

0 = α1d (ka)− 2α2d (ka + 1) + α3d (ka + 2) . (10)

Since the three bearing vectors are linearly independent, the only solution of (10) is
α1 = α2 = α3 = 0. From (9), it follows that the only solution of (8) is c1 = c2 = 0,
concluding the proof of sufficiency. The proof of necessity follows by contraposition.
Suppose that the conditions of the theorem are not met. In this case, it is possible to
choose α = [α1 α2 α3] ̸= 0 such that

α1d (ka) + α3d (ka + 2) = 2α2d (ka + 1) . (11)

With such choice, take

c =

[
α1d (ka)

α3

T d (ka + 2)− α2

T d (ka + 1)

]
.

Then c fulfills (9) and, therefore, fulfills (8). If c ̸= 0, then the system is not observable
and the proof of necessity would be concluded. Next, it is shown that the chosen α
and c imply c ̸= 0. The only case where c = 0 is when α1 = 0 and α2d (ka + 1) =
α3d (ka + 2). Then, equation (11) becomes

α1d (ka) = α2d (ka + 1) .

Since α1 = 0, then α2 = 0 = α3. This contradicts the hypothesis α ̸= 0. Therefore,
c ̸= 0, which concludes the proof of the theorem.

Remark 3. Among the three cases considered in this paper, the conditions of this
theorem are the most restrictive since they require a trajectory rich enough such that
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the bearing is always changing. The smallest possible interval was considered in the
theorem for single bearings. Nevertheless, observability can be achieved for longer time
intervals.

With the observability studied, the design of a local linear Kalman filter (LKF)
is the obvious choice, since it is applied to a system that is linear in the state. This
is due to the fact that dj is known. The Kalman filter yields globally exponentially
stable error dynamics if the system is shown to be uniformly completely observable
Jazwinski (1970). The proof, while long and tedious, follows similar steps considering
uniform bounds in time, resulting in a version of the observability conditions that are
uniform in time, see e.g. Batista et al. (2013b). Hence, it is omitted in the paper.

4. Decentralized system

4.1. Filter stability

The conditions for stability of the local observers have already been established. How-
ever, in the design of these local observers, it is assumed that the vehicles have access
to the position of the vehicles to which bearings are measured. When the observers
are put together into a decentralized system, they will only have access to position
estimates, which can be written as

p̂j (tk) = pj (tk) + ej(k),

where p̂j (tk) is an estimate of the position of vehicle j and ej(k) is a term with GES
dynamics, which represents the estimation error of pj (tk). This will change the value
of the artificial output, which will be given by

zj(k) =
(
I− dj(k)d

T
j (k)

)
p (tk) + ēj(k), (12)

where ēj(k) is defined as

ēj(k) =
(
I− dj(k)d

T
j (k)

)
ej(k).

Since ej(k) decays exponentially and I−dj(k)d
T
j (k) is bounded, ēj(k) will also decay

exponentially.
As so, the effect of not having the true position of the other vehicles can be regarded

as an exponentially decaying perturbation on the outputs of system (6). This will not
impact on the dynamics of the Kalman filter covariance matrix

Pk|k−1 = AkPk−1|k−1AT
k +Q

Kk = Pk|k−1CT
k (R+ CkPk|k−1CT

k )
−1

Pk|k = (I−KkCk)Pk|k−1 (I−KkCk)
T +KkRkK

T
k

,

where P is the estimation error covariance, K is the observer gain, and Q and R are
the process and output noise covariance matrices, respectively. Since these equations
are not affected by the perturbation, they will remain bounded. The estimates will be
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given by

x̂(k + 1) = Akx̂(k) +Bku(k) +Kk(z(k)− Ckx̂(k)).

Considering (12), the exponentially decaying perturbation will be multiplied by a
bounded matrix, K, which will cause an exponentially decaying error on the estimate
of the state x̂.

4.2. Chain propagation

All the local observers of the vehicles of the second tier receive true information of
the position of the vehicles of the tier above since it is assumed that the first tier
has access to its own position. Therefore, they will produce estimates of their own
position with GES error dynamics. As shown before, all the vehicles receiving position
estimates with GES error dynamics will also produce positions estimates with GES
error dynamics of their own. As so, the observers of all the tiers will converge, since
the errors that are propagated will always have GES error dynamics.

5. Simulation results

Monte Carlo simulations were performed to assess the performance of the proposed
solution when the measurements are subject to noise. A decentralized EKF and a de-
centralized UKF for the original system (2) was used for comparison, since this system
is nonlinear. The BCRB was also computed, which provides a theoretical performance
bound. Finally, an example where the EKF and the UKF diverge due to bad initial-
ization but the proposed solution converges is presented as a way to demonstrate the
advantage of establishing theoretical guarantees of convergence.

5.1. Setup

To perform the simulations, the formation depicted in Fig. 1 was used. The vehicles in
tier 1 measure bearing to one of the vehicles in tier 0, as depicted in Fig. 2. Vehicles
3, 4, and 5 measure depth but vehicle 6 does not. The vehicle in tier 2 measures
bearing to all four vehicles of tier 1, as depicted in Fig. 2, and has no access to depth
measurements. The vehicles that measure bearings to other vehicles receive, through
communications, the position estimates of those vehicles, as depicted in Fig. 2. Each
vehicle in tiers 1 and 2 implements, in the proposed solution. a LKF. Notice that,
compared to a centralized solution, the amount of communications is significantly
reduced, since no central node receives all the information and the vehicles in each tier
only communicate with the vehicles in adjacent tiers.

All the vehicles perform the same type of trajectory but with different starting
points. The trajectory was generated with way points, which are described in Table
1. The acceleration was limited to 0.01 m/s2, which resulted in the curve presented
in Fig. 3. For vehicle 2, the trajectory followed the same curve of the other vehicles,
to which it was added [10sin(0.1t) 50cos(0.13) 0]T . This is done to enrich the bearing
values of vehicle 6 relative to vehicle 2, so that the system becomes observable.

The fluid velocities were chosen with different values for each vehicle. The starting
points and the fluid velocities are presented in Table 2. The fluid velocity for the first
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Figure 1. Formation graph
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Figure 2. Communications (in dashed lines) and bearing measurements (in solid lines)

Time (s) Position (m)
0 [0 0 0]
100 [50 0 0]
200 [50 20 0]
300 [20 20 0]
400 [20 40 0]
500 [50 40 0]
600 [50 60 0]
800 [5 30 -30]
1000 [5 0 -30]

Table 1. Trajectory waypoints for vehicle 1
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Figure 3. Trajectory for vehicle 1

two vehicles was not specified since the observers for the upper tier were not simulated.
This is done without loss of generality since the observers of tier 0 do not depend the
rest of the formation.

Vehicle Initial Position (m) Fluid Velocity (m/s)
1 [0 0 0] —
2 [100 100 0] —
3 [1 1 -50] [0.19 0.13 0.30]
4 [0 10 -60] [0.20 0.10 0.30]
5 [110 100 -40] [0.18 0.11 0.28]
6 [90 90 -30] [0.21 0.10 0.27]
7 [50 50 -100] [0.21 0.12 0.27]

Table 2. Initial positions and fluid velocities used in the simulations.

A sampling period of 1 s is assumed for both the bearing measurements and the
communications between the vehicles, while all the other measurements are assumed
to be available at 100 Hz. Azimuth and inclination are measured, from which the
bearings are obtained as d = [sin(θ)cos(ϕ) sin(θ)sin(ϕ) cos(θ)]T , where ϕ and θ are,
respectively, the azimuth and inclination angles to another vehicle. Zero-mean white
Gaussian noise with a standard deviation of 1 was added to both angles. For the
vehicles in tier 0, the position is available but zero-mean white Gaussian noise was
added with a standard deviation of 0.1 m in each component. Some correlation was
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added, resulting in the covariance matrix

0.01×

 1 0.1 0.1
0.1 1 0.1
0.1 0.1 1

 .

Zero-mean white Gaussian noise with a standard deviation of 0.1 m was added to
the depth measurements. For the Euler angles used to obtain the rotation matrix,
uncorrelated zero-mean white Gaussian noise was added with a standard deviation
of 0.01 for the pitch and roll angles and 0.03 for the yaw angle. Finally, the relative
velocity to the fluid was corrupted by uncorrelated zero-mean white Gaussian noise
with standard deviation of 0.01 m/s. The integral in (3) was computed using the
trapezoidal rule.

5.2. Bayesian Cramr-Rao bound

Consider a system of the form of{
x(k + 1) = A(k)x(k) +B(k)u(k) + nx(k)

y(k) = h(x(k)) + ny(k)
, (13)

where x(k) is the state, u(k) is a deterministic input, and y(k) is the output, which
depends on the state through a nonlinear function h(x(k)). Both nx(k) and ny(k)
follow a zero-mean Gaussian distribution with covariance matrices Qx(k) and Qy(k),
respectively. For a system in this form, the BCRB is provided in van Trees (2007),
which is a lower bound on the estimarion error achievable by any unbiased estimator.

The recursion used to compute the BCRB is the same as the one in the EKF, with
the difference that the Jacobian of h is evaluated at the true state instead of the state
estimate.

The original system (2) is not in the form of (13) since the noise is not added to the
state and output of the system directly. However, the original system can be obtained
from another system, where the outputs are the inclination and azimuth angles, instead
of the bearing, as given by

p(tk+1) = p (tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

θj(k) = arcos
( pz

j (tk)− pz (tk)

∥pj (tk)− p (tk)∥

)
, j ∈ D

ϕj(k) = arctan
(py

j (tk)− py (tk)

px
j (tk)− px (tk)

)
, j ∈ D

h(k) = pz (tk) , if depth available

. (14)

Not considering the noise present in the attitude angles nor in pj , (14) is in the form
of (13), with the output noise being the one in the depth measure and the azimuth
and inclination angles and the noise in the state being the one in the fluid velocity
measure. As so, any unbiased observer for (2) should perform worst than the BCRB.
However, due to non-linearities, it is possible that the observers designed could result
slightly biased.
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5.3. Monte Carlo simulations

To check the performance of the proposed solution, Monte Carlo simulations were per-
formed. A total of 1000 simulations were carried out. The developed solution consists
of a Kalman Filter for (6) for each vehicle. The state covariance matrices were set to
diag(0.012I, 0.0012I), while the output covariance matrices were set to diag(0.12, 10I)
or 10I, depending on the availability of depth measurements. As for the decentralized
EKF and for the decentralized UKF, which were implemented for comparison purposes,
the state and output covariance matrices were set to, respectively, diag(0.012I, 0.0012I)
and diag(0.12, 0.001I) or 0.001I, also depending on the availability of depth measure-
ment. The generation of sigma-points used for the UKF followed the parametrization
proposed in Wan and Merwe (2000), with parameters α = 1, k = 0 and β = 2.

For each of the 1000 simulations, different, randomly generated noise signals were
considered, as detailed before. The initial state estimate was randomly generated from
a Gaussian distribution centered about the true initial state and with covariance matrix
diag(102I, I). For all the solutions, the estimates converged for all the states of all
vehicles.

To check the existence of bias, the mean of the estimation error for each time
instant was computed. Only the results for vehicle 3 are displayed since the results
for the remaining vehicles are analogous. In Fig. 4, Fig. 5, and Fig. 6 the mean of
position estimation errors for the LKF, EKF, and UKF, respectively, are presented.
It is possible to see that there is no significant bias and that the estimates fluctuate
around zero. There is also little difference between the three filters.
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Figure 4. Vehicle 3: Average position error with the LKF

In Fig. 7, Fig. 8, and Fig. 9 the mean of the fluid velocity estimation errors for
the LKF, EKF, and UKF, respectively, are presented. There is a clear bias in the z
component, which is caused by the non-linearities of the simulated system. This bias
is of similar value in all the solutions.
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Figure 5. Vehicle 3: Average position error with the EKF
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Figure 6. Vehicle 3: Average position error with the UKF
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Figure 7. Vehicle 3: Average fluid error with the LKF
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Figure 8. Vehicle 3: Average fluid error with the EKF
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Figure 9. Vehicle 3: Average fluid error with the UKF

To analyze the variance of both solutions, the RMSE of the Monte Carlo simulations
was computed. The results are presented for each component for vehicles 3, 6 and 7.
The RMSE is a more meaningful performance metric and the results for each type
of system are presented. In Fig. 10, Fig. 11, and Fig. 12, the RMSE of the position
estimates for vehicle 3 can be seen for the x, y, and z components, respectively. The
UKF is slightly faster to converge, followed by the LKF. The x and y components
converge as fast as the BCRB until they reach steady-state, at which point the LKF
reaches lower values. The z component presents the same behaviour for all the solu-
tions, which was expected since this component is linearly available through the depth
measurement.

In Fig. 13, Fig. 14, and Fig. 15, the RMSE of the fluid velocity estimates for vehicle
3 can be seen for the x, y, and z components, respectively. Conclusions identical to
the position analysis can be drawn.

In Fig. 16, Fig. 17, and Fig. 18, the RMSE of the position estimates for vehicle 6
can be seen for the x, y, and z components, respectively. This time, it is clear that the
LKF is the slower to converge and none of the solutions converge as fast as the BCRB.
However, it is interesting to see that all of them follow the same type of curve as the
BCRB. The results for the fluid velocity of vehicle 6 are not presented since they do
not bring any relevant information.

In Fig. 19, Fig. 20, and Fig. 21, the RMSE of the positions estimates for vehicle
7 can be seen for the x, y, and z components, respectively. The speed of convergence
is similar for all the solutions but one interesting thing to note is that now the LKF,
EKF, and UKF do not follow the same type of curve as the BCRB. This happens
because the BCRB does not take into account errors introduced by the previous tier
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Figure 10. Vehicle 3: x component of position RMSE
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Figure 11. Vehicle 3: y component of position RMSE
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Figure 12. Vehicle 3: z component of position RMSE
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Figure 13. Vehicle 3: x component of fluid velocity RMSE
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Figure 14. Vehicle 3: y component of fluid velocity RMSE
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Figure 15. Vehicle 3: z component of fluid velocity RMSE
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Figure 16. Vehicle 6: x component of position RMSE
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Figure 17. Vehicle 6: y component of position RMSE
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Figure 18. Vehicle 6: z component of position RMSE

estimates, which are particularly noticeable during the initial transients.
To evaluate the steady-state error variance, the average of the RMSE from t = 400 s

onwards was computed. The results are shown in Tables 3 to 7. For all the states, the
average RMSE is higher for the EKF and UKF than for the proposed solution. At the
same time, all are higher than the BCRB (square-rooted), as expected. Even though
the proposed solution performs better in steady-state than the EKF, the differences
are not significant.

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.0871 0.0869 0.0332 0.9023 0.8924 1.7060
EKF 0.1030 0.1029 0.0332 1.4917 1.4839 1.7060
UKF 0.1030 0.1029 0.0332 1.4916 1.4839 1.7060
BCRB 0.0510 0.0510 0.0112 0.1669 0.1668 0.0517

Table 3. Vehicle 3: Steady-state error standard deviations

In conclusion, the proposed solution is slightly slower than the UKF and similar in
terms of convergence speed to the EKF. At the same time, the proposed solution is
clearly the one that presents lower variance in steady-state. However, these differences
are not significant. As so, the proposed solution is comparable, in terms of performance,
with the traditional EKF and UKF. In the next section, the advantage of the proposed
solution in terms of stability, at no additional computational cost, is showcased.

Finally, it is important to remark that optimality cannot be claimed. One one
hand, and as previously mentioned, the measurement noise is not directly added to
the output. On the other hand, the measurement noise appears in the output system
matrix of the derived linear time-varying system. Nevertheless, the simulation results
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Figure 19. Vehicle 7: x component of position RMSE
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Figure 20. Vehicle 7: y component of position RMSE
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Figure 21. Vehicle 7: z component of position RMSE

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.0278 0.1476 0.0332 0.3193 1.5112 1.7051
EKF 0.0314 0.1674 0.0332 0.4368 2.1864 1.7050
UKF 0.0314 0.1674 0.0332 0.4368 2.1863 1.7050
BCRB 0.0167 0.0884 0.0112 0.0644 0.2833 0.0517

Table 4. Vehicle 4: Steady-state error standard deviations

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1017 0.1363 0.0331 1.0335 1.2506 1.6960
EKF 0.1096 0.1468 0.0331 1.5320 1.8945 1.6953
UKF 0.1096 0.1468 0.0331 1.5320 1.8945 1.6953
BCRB 0.0281 0.0360 0.0112 0.0958 0.1019 0.0517

Table 5. Vehicle 5: Steady-state error standard deviations

Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1023 0.1208 0.1660 1.0192 1.0545 1.4109
EKF 0.1027 0.1302 0.1816 1.5422 1.7753 2.2076
UKF 0.1027 0.1302 0.1816 1.5421 1.7753 2.2074
BCRB 0.0289 0.0384 0.0968 0.1032 0.1355 0.3092

Table 6. Vehicle 6: Steady-state error standard deviations
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Position (m) Fluid velocity (mm/s)
x y z x y z

LKF 0.1560 0.1542 0.1614 1.8748 1.8790 1.9927
EKF 0.1604 0.1605 0.1625 2.0628 2.1108 2.2128
UKF 0.1604 0.1605 0.1625 2.0636 2.1109 2.2127
BCRB 0.0802 0.0757 0.0797 0.2574 0.2433 0.2558

Table 7. Vehicle 7: Steady-state error standard deviations

clearly show the goodness of the proposed solution, which achieves a RMSE close to the
BCRB, which is the best possible performance achievable by any unbiased estimator.

5.4. Divergence example

The proposed solution has the advantage of exhibiting theoretical guarantees of conver-
gence. To show an example where this theoretical guarantee translates into a practical
advantage, a simulation was performed in which the filters for vehicle 5 were initial-
ized with a significant error of [2000, 2000, 2000, 0, 0, 0]T . The results for the proposed
solution can be seen in Fig. 22, while the results for the EKF and the UKF can be seen
in Fig. 23 and Fig. 24, respectively. The proposed solution is the only that converges.
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Figure 22. Vehicle 5: Convergence with LKF - Transient State

6. Conclusions

The communication bandwidth is very limited in underwater scenarios, rendering cen-
tralized navigation solutions impossible to implement. This paper presented a coop-
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Figure 23. Vehicle 5: Convergence issues with EKF
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Figure 24. Vehicle 5: Convergence issues with UKF

27



erative, decentralized navigation solution for formations of underwater vehicles based
on bearing measurements. Three cases of interest were analysed: i) in the first, a ve-
hicle has access to its depth and bearing to another vehicle of the formation; ii) in the
second, the vehicle has access to bearings to at least two other vehicles of the forma-
tion; iii) in the third, the vehicle measures the bearing relative to another vehicle but
does not measure depth. In order to cope with the nonlinear nature of the outputs,
artificial outputs were employed that render the dynamics linear, thus allowing for the
design of local Kalman filters with GES errors dynamics. Then, the error dynamics
of the formation as a whole were also shown to be GES. The proposed design is both
decentralized and distributed. On one hand, each vehicle only estimates its own state
- no vehicle estimates the whole state of the formation. On the other hand, there is no
need for any centralized operation, and there is no central node. Finally, Monte Carlo
simulations were presented, including the comparison with the EKF, the UKF, and the
BCRB. This comparison displayed an equivalent performance level for all solutions.
An example that showed the advantage of the theoretical guarantee of convergence of
the proposed solution was presented, making it the best solution of the three, at no
additional computational cost.
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