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Abstract

This paper addresses the problem of distributed controller design for linear discrete-
time systems. The problem is posed using the classical framework of state feedback
gain optimization over an infinite-horizon quadratic cost, with an additional sparsity
constraint on the gain matrix to model the distributed nature of the controller. An
equivalent formulation is derived that consists in the optimization of the steady-state
solution of a matrix difference equation, and two algorithms for distributed gain
computation are proposed based on it. The first method consists in a step-by-step
optimization of said difference matrix equation, and allows for fast computation of
stabilizing state feedback gains. The second algorithm optimizes the same matrix
equation over a finite time window to approximate asymptotic behavior and thus
minimize the infinite-horizon quadratic cost. To assess the performance of the
proposed solutions, simulation results are presented for the problem of distributed
control of a quadruple-tank process, as well as a version of that problem scaled up
to forty interconnected tanks.

KEYWORDS:
Distributed control; discrete-time systems; optimal control.

1 INTRODUCTION

Distributed control can be summarily stated as the use of multiple subcontrollers instead of a single centralized one to control a

complex dynamic system. Examples of such systemswhere distributed control can be advantageous include large-scale industrial

processes1,2, power systems3,4, and formations of autonomous vehicles5,6. In terms of design, this can be modeled as a classical

control problem subjected to sparsity constraints on both the dynamics and the controller to reflect the division into subsystems

and subcontrollers7,8. However, these additional constraints add significant complexity to the problem9.

0C. Silvestre is on leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
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In general, there is a tradeoff between performance and scope of applicability in the solutions presented in the literature,

which can be broadly divided into two categories: suboptimal solutions for general classes of problems, and optimal solutions

for specific classes of sparsity patterns. For the first case, the classical formulations for optimal control yield nonconvex

optimization problems, for which suboptimal solutions can be achieved through varied optimization methods10,11,12. One

notable method, called sparsity-promoting control13,14, investigates which sparsity patterns yield the best performance on top

of computing suitable controller gains. Another interesting approach focuses not only on controller design but also on the actual

modeling of large-scale systems15,16. Finally, there is a significant body of work that relies on decomposition structures such as

overlapping decomposition and border block diagonal decomposition for controller synthesis17,18. While the results mentioned

so far are suboptimal, researchers have shown that, for certain specific structures, it is possible to obtain optimality results. For

example, for systems which verify a condition called quadratic invariance, it is possible to achieve a convex, and thus tractable,

formulation19,20. A similar result can be derived for robust control over partially ordered sets, or posets, see e.g.21. The case

of spatially invariant systems is treated in22,23, while24,25 address systems with bounded nonlinear interconnections. Finally,

powerful results can be found for even more specific classes of systems, such as positive systems26 and symmetric Hurwitz state

matrices27.

The approach proposed in this paper diverges from existing work in the literature by not working directly with a finite-

horizon formulation to address the optimal distributed control problem. Instead, two methods are proposed that seek to obtain

well-performing steady-state controller gains through optimization over a single time step or a finite time window. It should

be noted that the idea behind these methods is different from model predictive control solutions: instead of computing a new

controller gain at each time step during operation, the goal here is offline computation of a single set of constant controller gains

with guaranteed performance. To do so, the problem is first posed using the classical formulation of infinite-horizon quadratic

cost minimization through state feedback for a discrete-time linear time-invariant (LTI) dynamic system, with an additional

sparsity constraint on the controller gain to model the division into several independent subcontrollers. Then, an equivalent

problem is derived that consists in the minimization of the steady-state solution of a given difference matrix equation, and two

different algorithms are proposed that take advantage of this framework. The first one, called the one-step algorithm, optimizes

the solution of said matrix equation at each time step, to converge to a well-performing distributed state feedback gain. The

second, called the finite-horizon algorithm, optimizes the solution of the difference matrix equation over a finite time window to

approximate asymptotic behavior, and thus minimize the original infinite-horizon quadratic control cost. Closed-form solutions

are derived for the optimization problems used in both algorithms, allowing for a more computationally efficient and scalable

implementation. To assess the performance of the proposed methods, simulation results are presented for the quadruple-tank

process introduced in28, as well as a larger scale version of the same problem with forty interconnected tanks.
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The rest of the paper is organized as follows. Section 2 formulates the problem of optimal distributed state feedback, from

which the one-step and finite-horizon algorithms are derived in Sections 3 and 4, respectively. Simulation results are then

presented in Section 5 for the quadruple tank model, while Section 6 details further simulation results for a larger scale version

of that problem. Finally, Section 7 summarizes the main conclusions of the paper.

1.1 Notation

Throughout the paper, I and 0 denote the identity matrix and a vector or matrix of zeros, respectively, both of appropriate

dimensions. A block diagonal matrix A with n blocks A1,A2,… ,An is denoted by A = diag(A1,A2,… ,An). Similarly, a

diagonal matrix B whose entries are given by the entries of a vector b is denoted by B = diag(b). The notation vec(A) denotes

the vectorization operator, which returns a vector composed of the columns of the matrix A. For a symmetric matrix P, P ≻ 0

and P ⪰ 0 indicate that P is positive definite or semidefinite, respectively. The Kronecker product of two matrices A and B is

denoted by A⊗ B.

2 PROBLEM FORMULATION

Consider the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), (1)

where x(k) ∈ ℝn and u(k) ∈ ℝm are the state and input of the system, respectively, and A and B are constant real matrices of

appropriate dimensions.

For a given E ∈ ℝm×n, the set of matrices that follow the sparsity pattern of E is defined as

Sparse(E) =
{

F ∈ ℝm×n ∶ [E]ij = 0 ⇐⇒ [K]ij = 0, i = 1,… , m, j = 1,… , n
}

.

The input of (1) is defined as

u(k) = −Kx(k), with K ∈ Sparse(E), (2)

where K ∈ ℝm×n is a constant state feedback gain matrix, which is subject to the desired sparsity pattern E. This sparsity

constraint on the controller gain can be used to model distributed control solutions, as it is shown in the simulations detailed

in later sections of this paper. For a quick example, suppose that B = I. Then, a diagonal gain matrix K represents a fully

decentralized controller, in which each individual state variable of the system (1) is controlled by an independent local controller,

which has access to only that respective state variable. In the same fashion, a block diagonal structure for K can be used to

represent different local controllers actuating on distinct subsystems.
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The main problem addressed in this paper is the computation of controller gains for the system (1) subject to a given sparsity

constraint (2) that minimize the infinite-horizon quadratic cost function

J =
+∞
∑

k=0

(

xT(k)Qx(k) + uT(k)Ru(k)
)

, (3)

where Q ⪰ 0 and R ≻ 0. In the sequel, the following assumption is made.

Assumption 1. There exists a stabilizing distributed gain for the system (1), that is, there exists a K ∈ Sparse(E) such that the

eigenvalues of the closed loop matrix (A − BK) lie inside the unit circle.

2.1 Cost function reformulation

For the centralized case, that is, whenK is not subject to a sparsity constraint, the design of optimal controllers is well understood

and extensively documented in the literature29. However, those results are not applicable to the distributed case, and one must

develop alternative approaches when the gain is subject to a sparsity constraint.

The rest of this section is dedicated to the reformulation of the cost function (3) to achieve a form that allows for the derivation

of the algorithms detailed in the next two sections. First, substituting (2) in (1) yields the closed-loop difference equation

x(k + 1) = (A − BK)x(k). (4)

Now, assume that all the eigenvalues of (A − BK) lie inside the unit circle. Then, for the given Q and R, there exists an unique

positive-definite matrix P∞ ∈ ℝn×n such that

(A − BK)TP∞(A − BK) − P∞ = −Q −KTRK, (5)

see e.g.30, Theorem 23.7. Let

V (x(k)) ∶= xT(k)P∞x(k).

Using (4) and (5), it follows that

V (x(k + 1)) − V (x(k)) = xT(k + 1)P∞x(k + 1) − xT(k)P∞x(k) (6)

= xT(k)(A − BK)TP∞(A − BK)x(k)−xT(k)P∞x(k)

= −xT(k)(Q +KTRK)x(k).
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Substituting (2) in (3) and using (6) yields

J =
+∞
∑

k=0

(

xT(k)Qx(k) + uT(k)Ru(k)
)

(7)

=
+∞
∑

k=0
xT(k)(Q +KTRK)x(k)

=
+∞
∑

k=0
V (x(k)) − V (x(k + 1)).

As the closed-loop difference equation (4) is assumed to be stable, it follows that V (x(k)) goes to zero as k goes to infinity, and

(7) is reduced to

J = V (x(0)) = xT(0)P∞x(0). (8)

Thus, the optimal distributed gain K ∈ Sparse(E) is the one that minimizes (8), in which P∞ is the unique positive-definite

solution of (5).

Note that the optimal cost (8) depends explicitly on the initial state of the system. To circumvent this issue, suppose that x(0)

is sampled from a normal distribution with zero mean and covariance �I, where � > 0 is an arbitrary positive scalar constant.

Then, the expectation of the cost function (8) follows

E {J} = E
{

xT(0)P∞x(0)
}

= E
{

tr(xT(0)P∞x(0))
}

(9)

= E
{

tr(P∞x(0)xT(0))
}

= tr(E
{

P∞x(0)xT(0)
}

)

= tr(P∞�I) = � tr(P∞).

The minimization of (9) can thus be seen as optimizing the controller for a wide range of possible initial states, possibly even the

whole field of ℝn as � can be made arbitrarily large. The optimal distributed controller design problem considered in this paper

can then be restated as finding the gain K ∈ Sparse(E) that minimizes the trace of P∞, where P∞ is the unique positive-definite

solution of the algebraic matrix equation (5), that is, solve the optimization problem

minimize
K∈ℝm×n

P∞∈ℝn×n

tr(P∞)

subject to P∞ = (A − BK)TP∞(A − BK) +Q +KTRK

P∞ ≻ 0

K ∈ Sparse(E)

(10)

Finally, consider the difference matrix equation

P(k + 1) = (A − BK)TP(k)(A − BK) +Q +KTRK. (11)
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For a given stabilizing gain K, it can be shown that the solution P(k) of (11) converges to the unique positive-definite solution

P∞ of (5) as k → ∞ for any positive-definite initial condition P(0) ≻ 0, see e.g.30. Then, the optimal distributed controller

design problem (10) can be reformulated as

minimize
K∈ℝm×n

lim
k→∞

tr(P(k))

subject to P(k + 1) = (A − BK)TP(k)(A − BK) +Q +KTRK

P(0) = P0 ≻ 0

K ∈ Sparse(E)

This formulation is used in the rest of the paper to derive algorithms to compute well-performing distributed controller gains

for the system (1).

3 ONE-STEP ALGORITHM FOR DISTRIBUTED CONTROLLER DESIGN

This section details the first of two algorithms introduced in this paper to compute distributed state feedback gains for the

discrete-time LTI system (1).

Consider the difference matrix equation (11) with a time-varying gain:

P(k + 1) = (A − BK(k + 1))TP(k)(A − BK(k + 1)) +Q +KT(k + 1)RK(k + 1). (12)

The proposed controller gain computation algorithm is the following: starting with an arbitrary P(0) ≻ 0, compute the gainK(1)

subjected to the desired sparsity pattern that minimizes tr(P(1)). Then, given the newly obtained P(1), compute the gain K(2)

that minimizes tr(P(2)), and so on. That is, at each step k the next K(k + 1) is obtained by solving the optimization problem

minimize
K(k+1)∈ℝm×n

tr(P(k + 1))

subject to K(k + 1) ∈ Sparse(E)
(13)

in which P(k + 1) is computed from P(k) using (12). Note that, as (13) is a quadratic optimization problem subject to a linear

constraint, its optimal solution can be computed efficiently. The difference matrix equation (12) is propagated using the gains

obtained by solving (13) until steady-state is achieved, yielding a constant gain K and associated performance metric tr(P∞).

In the unconstrained case, this algorithm yields the optimal steady-state LQR gain. However, when operating with a sparsity

constraint on the gain, the obtained steady-solution is suboptimal, as it is shown in the simulation results presented ahead in the

paper. Nevertheless, the one-step algorithm remains a versatile and computationally efficient method to computed distributed

state feedback gains. To speed up the algorithm, the solution of the optimization problem (13) can be obtained in closed-form,

as detailed in the following result.
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Theorem 1. Let li ∈ ℝm denote a column vector whose entries are all set to zero except for the i-th one, which is set to 1, and

define i ∶= diag(li). Define a vector mj ∈ ℝn to encode the nonzero entries in the j-th column of K(k + 1), following

⎧

⎪

⎨

⎪

⎩

mj(i) = 0 if [E]ij = 0

mj(i) = 1 if [E]ij ≠ 0
, i = 1, 2,… , n,

and letj = diag(mj). Then, the optimal solution of the optimization problem (13) is given by

K(k + 1) =
n
∑

j=1
(I −j +jS(k + 1)j)−1jBTP(k)Aj , (14)

where

S(k + 1) = BTP(k)B + R. (15)

Proof. See A.

4 FINITE-HORIZON ALGORITHM FOR DISTRIBUTED CONTROLLER DESIGN

This section details another algorithm to compute distributed state feedback gains for the system (1).

To improve on the performance offered by the algorithm detailed in the previous section, instead of optimizing the controller

gain one time step at a time, this method considers the following finite-horizon problem:

minimize
K(i)∈ℝm×n

i=1,2,…,W

W
∑

k=1
trace(P(k))

subject to K(i) ∈ Sparse(E), i = 1, 2,… ,W

(16)

The idea behind this formulation is to approximate steady-state behavior by makingW large enough, and thus obtain a constant

state feedback gain that outperforms the one computed with the one-step method. However, the optimization problem (16) is

nonconvex, as the objective function is polynomial in the optimization variablesK(k), k = 1, 2,… ,W . This can be verified by

expressing P(k), k = 1, 2,… ,W in terms of the initial condition P(0) and the gains K(k) using (11).

On the other hand, suppose that only one of the gains K(k) is kept as an optimization variable while the rest are fixed to

constant given values. Then, the optimization problem (16) takes the form

minimize
K(k)∈ℝm×n

W
∑

i=1
trace(P(i))

subject to K(k) ∈ Sparse(E)

(17)
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TABLE 1 Finite-horizon algorithm

(1) Initialization: Select a window size,W , an initial P(0) ≻ 0, and compute a set of initial P(k), k = 1,… ,W
and controller gains K(k), k = 1,… ,W using, e.g., the one-step method.
Select a stopping criterion, for example a minimum improvement on the objective function of (16) or a fixed
number of iterations.

(2) Set i = W.
(3) Inner loop:

(a) Fix all gains except for K(i), and solve (17) for K(i), replacing the previous value for that gain.
(b) Set i = i − 1. If i = 0, exit the inner loop to Step (4). Otherwise, go to (a).

(4) Recompute P(1) through P(W ) using the new gains.
(5) If the stopping criterion is met, go to (6). Otherwise, go to (2).
(6) Compute the steady-state performance obtained with each distinct K(k) using (11), and select the best

performing gain to apply to the distributed controller.

which is quadratic, and can thus be solved using conventional methods. Taking advantage of this fact, the algorithm detailed in

Table 1 is proposed to improve the solution found using the one-step algorithm. This method aims to improve the performance

over the finite time window iteratively by computing a new K(k) for a different k ∈ {1, 2,… ,W } at each step by solving (17).

The solution of the partial problem (17) can be computed, in closed-form, as detailed in the following result.

Theorem 2. Define a matrix Z such that the vector Zvec(K(k)) contains the nonzero elements ofK(k) according to the desired

sparsity pattern. The closed-form solution of (17) is given by

vec(K(k)) = ZT
(

Z(�(k)⊗ S(k))ZT
)−1 Z vec(BTP(k − 1)A�(k)), (18)

where S(k) is computed as in (15), and

�(k) =
W
∑

i=k
�(k + 1, i)�T(k + 1, i),

with

�(ki, kf ) =
kf
∏

j=ki

(A − BK(j)). (19)

When ki > kf , we follow the convention �(ki, kf ) = I.

Proof. See B.
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Tank 3

Tank 2Tank 1

Tank 4

Valve 1

Pump 2

Valve 2

Pump 1

FIGURE 1 Schematic diagram of the quadruple-tank process28

Remark 1. As an example of how to compute Z, consider K(k) of the form

K(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

k1 0

k2 k3

0 k4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. Then, vec(K(k)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k1

k2

0

0

k3

k4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and Z =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In this case, the chosen Z preserves the order of the nonzero elements with respect to vec(K(k)). However, this is not mandatory

as any permutation of the rows of Z will still yield the optimal gain using (18).

5 APPLICATION TO THE QUADRUPLE-TANK PROCESS

This section details the results of simulations that were carried out to assess the performance of the proposed distributed control

solutions. The model chosen to test the controller design methods detailed in the previous sections is the quadruple-tank process

proposed in28, as depicted in Fig. 1.
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TABLE 2 Parameters of the quadruple-tank process

1 2 3 4
Ai (cm2) 28 32 28 32
ai (cm2) 0.071 0.057 0.071 0.057

ki (cm3∕Vs) 3.33 3.35 — —

i 0.7 0.6 — —

The dynamics of the quadruple-tank process are given by the nonlinear system

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℎ̇1(t) = − a1
A1

√

2gℎ1(t) +
a3
A1

√

2gℎ3(t) +

1k1
A1
v1(t)

ℎ̇2(t) = − a2
A2

√

2gℎ2(t) +
a4
A2

√

2gℎ4(t) +

2k2
A2
v2(t)

ℎ̇2(t) = − a3
A3

√

2gℎ3(t) +
(1−
2)k2
A3

v2(t)

ℎ̇2(t) = − a4
A4

√

2gℎ4(t) +
(1−
1)k1
A4

v1(t)

, (20)

in which ℎi(t), Ai, and ai are the water level, cross-section, and outlet hole cross-section of Tank i, respectively, and g is the

acceleration of gravity. A voltage vi(t) is applied to each pump, resulting in the corresponding flow kivi, and the parameters


i ∈ [0, 1]model the effect of the corresponding valves. The measured output is the water level in Tanks 1 and 2. The parameters

of the model were set to values similar to those detailed in28, see Table 2.

The model was then linearized around the equilibrium point

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℎ01 = 12.26 (cm)

ℎ02 = 12.78 (cm)

ℎ03 = 1.63 (cm)

ℎ04 = 1.41 (cm)

v01 = 3 (V)

v02 = 3 (V)

,

yielding the LTI system
⎧

⎪

⎨

⎪

⎩

ẋ(t) = ACx(t) + BCu(t)

y(t) = CCx(t)
,

in which

AC =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
T1

0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, BC =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣


1k1
A1

0

0 
2k2
A2

0 (1−
2)k2
A3

(1−
1)k1
A4

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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and CC =
[

I2 0
]

. The time constants in AC are given by

Ti =
Ai
ai

√

2ℎ0i
g
, i = 1,… , 4.

Following this, the linearized model was discretized with sampling time Ts, yielding the discrete-time LTI system

⎧

⎪

⎨

⎪

⎩

x(k + 1) = ADx(k) + BDu(k)

y(k) = CDx(k)
,

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

AD = eACTs

BD = A−1
C (eACTs − I)BC

CD = CC

.

Finally, to follow a reference signal r(k) ∈ ℝ2, two additional state variables q(k) ∶=
[

q1(k) q2(k)
]T

∈ ℝ2 are introduced that

accumulate the output tracking error, following

q(k + 1) = q(k) + (y(k) − r(k)),

yielding the augmented LTI system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎣

x(k + 1)

q(k + 1)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

AD 0

CD I

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x(k)

q(k)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

BD 0

0 −I

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u(k)

r(k)

⎤

⎥

⎥

⎥

⎦

y(k) = CDx(k)

. (21)

It is then straightforward to apply the methods detailed in the previous sections to (21) to design and optimize distributed

controllers for the quadruple-tank process, as modeled by the nonlinear system (20). In the simulations that follow, one local

controller is implemented at each pump. For Pump 1, the controller uses only the measured output ℎ1(t) and its corresponding

integral state q1(k), while the controller for Pump 2 has access to ℎ2(t) and its corresponding integral state q2(k). Thus, the

controller gain matrix K follows the sparsity pattern

K =

⎡

⎢

⎢

⎢

⎣

kℎ1 0 0 0 kI1 0

0 kℎ2 0 0 0 kI2

⎤

⎥

⎥

⎥

⎦

. (22)

Figure 2 depicts the evolution of the trace of P(k) for both proposed methods applied to the augmented system (21) with the

sparsity pattern (22). In this case, the weight matrices were set toQ = I and R = I and the sampling time was set to Ts = 10 (s).

As it can be seen, in both cases a stable steady-state was achieved, and the finite-horizon algorithm improved the performance
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FIGURE 2 Evolution of trace(P(k)) over a 100-step window for both methods

over the one-step algorithm. However, as the improvement was relatively small (around 2.5%) both controllers show very similar

behavior, and thus the simulation results that follow depict only the controller computed using the finite-horizon algorithm.

The resulting discrete-time distributed controller was first compared to the continuous-time distributed PI controller proposed

in28. Figure 3 depicts the response of both controllers to a step in both tracking variables. As it can be seen, while the finite-

horizon controller is slightly slower, mainly due to the delay introduced by the discrete-time implementation, it overshoots less

while yielding a smaller control input. This is expected, as the continuous-time PI controller in28 was tuned manually while the

discrete-time controller was optimized algorithmically.

Following this, further simulations were carried out to verify if the proposed controller design methods are able to follow

design specifications, namely through tuning the state and input weight matricesQ and R. To do so, distributed controller gains

were obtained using the finite-horizon method for three different values ofR: I, 10 I, and 100 I. The results are depicted in Fig. 4.

As it can be seen, as the weight on the input increases, the controller generates an input of smaller magnitude, with the expected

trade-off of a slower response to the step in the reference signal. This shows that the proposed methods can indeed be used to

tune the performance of distributed controllers using the design parameters Q and R.

6 SIMULATIONS FOR A LARGER SCALE MODEL

This section details simulation results for a larger scale version of the model used in the previous section. In this case, instead of

a quadruple-tank process we consider a system with 40 interconnected tanks, see Fig. 5 for a simplified scheme of the process.

The dynamics of this 40-tank process can be modeled by the nonlinear system

ḣ(t) = (A40 + D40)s(t) + B40v(t), (23)
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FIGURE 3 Response of the closed-loop system to a step in both tracked variables

in which

h(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ1(t)

ℎ2(t)

⋮

ℎ40(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ40

is the vector containing the water levels of each tank,

s(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

2gℎ1(t)
√

2gℎ2(t)

⋮
√

2gℎ40(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ40,
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FIGURE 4 Response of the closed-loop system for different design parameters

where g is the acceleration of gravity, and

v(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1(t)

v2(t)

⋮

v20(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ20

is the vector containing the input voltages of each pump. The parameters of the system are the cross-sections of the tanks Ai and

the cross-sections of the outlet holes ai, as well as the constants ki and 
i associated with the pumps and the valves, respectively.

The matrices of the system are computed using those parameters, following

A40 = diag
(

−
a1
A1
,−

a2
A2
,… ,−

a40
A40

)

,

D40 =

⎡

⎢

⎢

⎢

⎣

0 diag
(

a21
A1
, a22
A2
,… , a40

A20

)

0 0

⎤

⎥

⎥

⎥

⎦

,
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FIGURE 5 Schematic diagram of the 40-tank process28

TABLE 3 Parameters of the 40-tank process

i = 1,… , 20 i = 21,… , 40
Ai (cm2) 28 32
ai (cm2) 0.05 0.075

ki (cm3∕Vs) 3.33 —

i 0.55 —

and

B40 =

⎡

⎢

⎢

⎢

⎣

diag
(


1k1
A1
, 
2k2
A2
,… , 
20k20

A20

)

Ba40

⎤

⎥

⎥

⎥

⎦

,

in which

Ba40 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 … 0 (1−
20)k20
A21

(1−
1)k1
A22

0 … 0 0

0 (1−
2)k2
A23

… ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … (1−
19)k19
A40

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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FIGURE 6 Evolution of trace(P(k)) over a 200-step window for both methods, with R = I

TABLE 4 Projected performance (trace(P∞)) for both distributed controller design methods

One-step Finite-horizon
R = I 4.63 × 102 4.22 × 102

R = 10I 1.57 × 103 1.35 × 103

R = 100I 7.65 × 103 6.39 × 103

For the simulation results presented in this section, the parameters of the system were set to the values detailed in Table 3.

To obtain a model suitable for application of the methods introduced in Sections 3 and 4, the nonlinear system (23) was first

linearized around the operating point
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ0i = 12.26 (cm), i = 1,… , 20

ℎ0i = 12.78 (cm), i = 21,… , 40

v0i = 3 (V), i = 1,… , 20

,

then discretized, and finally augmented with integral states similarly to what was done in the previous section. The distributed

controller is composed of one local controller for each pump i, which has access to only the water level ℎi(t) and respective

integral state. Gains for the distributed controller were then computed with both the one-step and finite-horizon algorithms, with

Ts = 10 (s), Q = I, and various values for R. The results are depicted in Fig. 6 and Table 4. As it can be seen, in all cases the

finite-horizon algorithm outperformed the one-step algorithm.

The gains obtained with both methods were then tested in simulation, and the results are depicted in Fig. 7 and 8. Figure 7

depicts the evolution of ℎ1(t), ℎ2(t), and the inputs of their respective local controllers in response to a step in the reference for

ℎ1(t). As it can be seen, the reference is tracked correctly by both distributed controllers, and the finite-horizon controller has a

slightly faster response at the cost of a larger input signal. To better assess the performance of both methods, Fig. 8 depicts the
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FIGURE 7 Response of the closed-loop system to a step in ℎ1

evolution of ℎ1(t) and respective input for different values of the input weight matrix R. In both cases, larger values of R induce

a smaller input signal, as well as the expected slower response to the step in the reference. However, note that using different

values of R has more impact in shaping the behavior of the closed-loop system with the finite-horizon controller, as evidenced

by the larger differences in the evolution of the water level as well as the input. This suggests that the finite-horizon algorithm

is better suited to fine-tuning the controller gains using the state and input weight matrices Q and R.

7 CONCLUSIONS

This paper addressed the problem of distributed controller design for linear discrete-time systems. The problem was posed

using the classical framework of state feedback gain optimization over an infinite-horizon quadratic cost, with an additional

sparsity constraint on the gain matrix to model the distributed nature of the controller. An equivalent formulation was derived

that consists in the optimization of the steady-state solution of a matrix difference equation, and two methods for distributed

gain computation were proposed based on it.
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FIGURE 8 Comparison between the two methods for different design parameters

The first one, called the one-step algorithm, optimizes the solution of said difference matrix equation at each time step, to

converge to a well-performing distributed state feedback gain. A closed-form solution for the computations required at each step

is detailed, allowing for fast computation of stabilizing gains.

The second method, called the finite-horizon algorithm, optimizes the solution of the difference matrix equation over a finite

time window to approximate asymptotic behavior, and thus minimize the original infinite-horizon quadratic control cost as the

size of the window increases. A closed-form solution for the optimization problems solved during each iteration is also presented

for this method.

To assess the performance of the proposed solutions, simulation results were presented for the problem of distributed control

of a quadruple-tank process, as well as a version of that problem scaled up to forty interconnected tanks.
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APPENDIX

A PROOF OF THEOREM 1

The optimization problem (13) can be seen, instead of as a quadratic problem with a matrix variable K(k + 1) subject to a

sparsity constraint, as an unconstrained quadratic problem whose variables are the nonzero entries ofK(k+1). Thus, the optimal

solution can be found by differentiating the objective function with respect to these nonzero entries and equaling to zero.

Taking the trace of both sides of (12) and differentiating with respect to K(k + 1), it can be shown that

)tr(P(k + 1))
)K(k + 1)

= −2BTP(k)A + 2S(k + 1)K(k + 1). (A1)

Define a set  of integer pairs of the form (i, j) to index the nonzero entries in K(k + 1), that is,

⎧

⎪

⎨

⎪

⎩

(i, j) ∈  if [E]ij ≠ 0

(i, j) ∉  otherwise
, i = 1,… , m, j = 1,… , n. (A2)

Using (A1) and taking into account the sparsity constraint yields a set of m × n linear equations,

⎧

⎪

⎨

⎪

⎩

lTi (S(k + 1)K(k + 1) − BTP(k)A)lj = 0 for all (i, j) ∈ 

lTi K(k + 1)lj = 0 for all (i, j) ∉ 
. (A3)

Now, consider the j-th column of K(k + 1). From the first part of (A3), it follows that

(i,j)∈
∑

i
i(S(k + 1)K(k + 1) − BTP(k)A)lj = 0. (A4)

Using the notation introduced above, (A4) can be rewritten as

jS(k + 1)K(k + 1)lj = jBTP(k)Alj . (A5)
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The left-hand side of (A5) can be expanded to

jS(k + 1)K(k + 1)lj = jS(k + 1)(I +j −j)K(k + 1)lj

and then, using the second part of (A3), simplified to

jS(k + 1)K(k + 1)lj = jS(k + 1)jK(k + 1)lj . (A6)

Substituting (A6) in (A4) yields

jS(k + 1)jK(k + 1)lj = jBTP(k)Alj . (A7)

However, (A7) cannot be solved for K(k + 1) yet as the matrix jS(k + 1)j is singular. To circumvent this, note that the

second part of (A3) implies

jS(k + 1)jK(k + 1)lj = (I −j +jS(k + 1)j)K(k + 1)lj .

Then, substituting into (A7) yields

(I −j +jS(k + 1)j)K(k + 1)lj = jBTP(k)Alj ,

which implies that the j-th column of the optimal one-step gain is given by

K(k + 1)lj = (I −j +jS(k + 1)j)−1jBTP(k)Alj . (A8)

Finally, summing (A8) for all columns of K(k + 1) yields the closed-form expression (14).

B PROOF OF THEOREM 2

To begin with, note that the optimization problem

minimize
K(k)∈ℝm×n

W
∑

i=k
trace(P(i))

subject to K(k) ∈ Sparse(E)

(B9)

has the same optimal solution as (17), as the previous steps are not affected by the value of K(k). As for the one-step case, (B9)

can be solved by differentiating the objective function with respect to the nonzero entries in K(k) and equaling to zero.
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Using (11), it can be shown that, for j ≥ k, P(k) can be expressed as

P(j) = �T(k, j)P(k − 1)�(k, j) +
j
∑

i=k
�T(i + 1, j)KT(i)RK(i)�(i + 1, j) +

j
∑

i=k
�T(i + 1, j)Q�(i, j), (B10)

where �(ki, kf ) is defined as in (19). Taking the trace of both sides of (B10) and differentiating with respect to K(k) yields

) trace(P(j))
)K(k)

= 2
(

S(k)K(k) − BTP(k − 1)A
) (

�(k + 1, j)�T(k + 1, j)
)

. (B11)

Summing (B11) over j = k, k + 1,… ,W yields

)
∑W
j=k trace(P(j))
)K(k)

= 2
(

S(k)K(k) − BTP(k − 1)A
)

�(k).

Following the same procedure as in the previous section yields the set of linear equations

⎧

⎪

⎨

⎪

⎩

lTi
(

S(k)K(k) − BTP(k − 1)A
)

�(k)lj = 0 for all (i, j) ∈ 

lTi K(k)lj = 0 for all (i, j) ∉ 
, (B12)

where  is defined as in (A2). Using vectorizing operators and the selection matrix Z, the first part of (B12) can be rewritten as

Z vec(S(k)K(k)�(k)) = Z vec(BTP(k − 1)A�(k)). (B13)

Note also that the second part of (B12) implies that

vec(K(k)) = ZTZ vec(K(k)). (B14)

The left-hand side of (B13) can be rewritten as

Z vec(S(k)K(k)�(k)) = Z(�(k)⊗ S(k)) vec(K(k)) = Z(�(k)⊗ S(k))ZTZ vec(K(k)). (B15)

Using (B15) in (B13) yields

Z(�(k)⊗ S(k))ZTZ vec(K(k)) = Z vec(BTP(k − 1)A�(k)),

which implies that

Z vec(K(k)) =
(

Z(�(k)⊗ S(k))ZT
)−1 Z vec(BTP(k − 1)A�(k)).

Finally, multiplying by ZT on both sides and using (B14) yields the closed-form solution (18).
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