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Lisa Kuhlmann - Teilüberwachte semantische Segmentation von Rauch und Feuer anhand

von luftgestützten Aufnahmen mit Generative Adversarial Networks zur Unterstützung der

Bekämpfung von Waldbränden

Kurzzusammenfassung

Die semantische Segmentierung von Rauch und Feuer kann eine Basis für die An-
wendung nützlicher Tools zur Unterstützung der Bekämpfung von Waldbränden
sein. Die Menge an annotierten Datensets, die für das Training von Deep Learning
Modellen benötigt wird, ist sehr limitiert und das Erstellen aufwendig. Deshalb
versucht diese Arbeit, nicht annotierte Bilder von Rauch und Feuer zusammen mit
annotierten Bildern in einem teilüberwachten Lernansatz zu nutzen. Dazu wird ein
Generative Adversarial Network (GAN) genutzt. Da GANs zur Instabilität während
des Trainings neigen, werden verschiedene Einstellungen von Hyperparametern und
ein kurzes, anfängliches vollüberwachtes Training getestet. Die erhaltenen Ergeb-
nisse zeigen, verglichen mit einer vollüberwachten Methode als Basis, eine leichte
Verbesserung der Genauigkeit der Segmentierungen. Dies weist darauf hin, dass die
angewendete Methode eine Basis für weitere Verbesserungen in der Anwendung von
teilüberwachtem Lernen für die Segmentierung von Rauch und Feuer sein kann.

Stichworte

Semantische Segmentation, Generative Adversarial Networks, Teilüberwachtes Ler-
nen, Rauch, Feuer
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Lisa Kuhlmann - Semi-supervised Semantic Segmentation of Smoke and Fire from Air-

borne Images with Generative Adversarial Networks to support Firefighting Actions

Abstract

The semantic segmentation of smoke and fire can be a basis for the application of use-
ful tools to support firefighting actions. The amount of annotated training datasets
required to train a deep neural network for this task is very scarce and the creation
is expensive. This is why this work tries to leverage unlabeled training images used
together with annotated images in a semi-supervised learning approach with the
application of a Generative Adversarial Network (GAN). As GANs are prone to
training instabilities, di�erent hyperparameter settings and a short, fully-supervised
pre-training are tested in this thesis when being applied to the segmentation of
fire and smoke. The results obtained show a small improvement in segmentation
accuracy compared to a fully-supervised baseline. This indicates that this method
could be a basis for further improvements using additional unlabeled data to train
a semi-supervised segmentation model.

Keywords
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Chapter 1

Introduction

1.1 Motivation

The risks of wildfires in Portugal and worldwide have been showing an increasing trend
over the past decades. Figure 1.1 visualizes this trend in Portugal, where the decadal
average of burned area increased "from under 75.000 ha during the 1980ies, to 100.000
ha in the 1990ies, to over 150.000 ha since 2000", as stated in a report about wildfire
management by Beighley and Hyde [BH18].

Figure 1.1: The annual burned area by wildfires in hectare in Portugal from 1980 to 2017,
adapted from [BH18].

1
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Noticeable is, that there is an inter-annual variability in the severity of the fires, but
during the last two decades the intensities of the peak wildfire years have gotten much
higher compared to the years before 2000. During these peaks, the risk of firefighting
forces being overwhelmed is high. This scenario happened for example during the wildfire
period in 2017, where over 100 people lost their lives. Figure 1.2a shows the dimension of
the burned areas in 2017 colored in black and in Figure 1.2b Beighley and Hyde report
the risks of di�erent fire scenarios happening during the next decade.

(a) (b)

Figure 1.2: Wildfire susceptibility with burned areas in 2017 in 1.2a and di�erent wildfire
scenarios and their risk during the next decade in 1.2b. Figures adapted from [BH18].

To handle upcoming wildfire periods, the authors suggest a variety of measures. These
include renewing fuel management e�orts, fire planning and prevention, improving fire-
fighter performance and their pay and career opportunities, rethinking cultural attitudes
as well as adjusting the fire suppression skill set. These measures can also be supported
by technology.

This thesis will focus on the aerial support for firefighters with footage from manned
and unmanned aerial vehicles, such as drones. Essential for the automatic detection and
segmentation of smoke and fire from aerial images is a good quality of the segmentations,
as these are the basis for further tasks and need to be reliable. Common problems in this
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field are the definition of the object borders, the detection of small areas far away from
the camera and the confusion with similar objects like fog and clouds.

1.2 Topic overview

The detection and segmentation of smoke and fire has been a widely researched topic in
the past, beginning with traditional image processing and machine learning techniques
working with handcrafted features such as colors and shapes. A more recent approach is
the use of Deep Learning and Convolutional Neural Networks in the field of Computer
Vision. These methods have in general shown good results, often outperforming traditional
image processing methods because of their power to handle multi-dimensional datasets
and to learn combinations of non-linear functions that can approximate very complex data
distributions. However, Deep Learning needs a big amount of labeled training data to
perform its best. Creating this labeled training data is a time-consuming task. It requires
a significant amount of human e�ort to annotate an image on pixel level for segmentation
masks acting as a ground truth reference for network training. Regarding the segmentation
of smoke and fire and many other tasks there is a scarcity of labeled training data, which
led to di�erent approaches like using additional unlabeled training data in semi-supervised
learning. Using only unlabeled data in unsupervised learning or data labeled only on image
level or with bounding boxes in weakly-supervised learning are other methods trying to
tackle the same problem. This work concentrates on a semi-supervised method using a
Generative Adversarial Network (GAN) to leverage unlabeled training images together
with labeled images for the task of smoke and fire segmentation.

1.3 Objectives

The goal of this thesis is to study experimentally the potential use of a semi-supervised
GAN applied to the segmentation of smoke and fire while only using very small labeled
training datasets of rgb channel images with additional unlabeled data. Firstly, the
hyperparameter tunability of an existing GAN from the work of Mittal et al. [MTB19] is
analysed when being applied to a wildfire dataset published by the Université de Corse
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Pasquale Paoli [Noab]. Then the potential benefits of a fully-supervised pre-training
before the start of semi-supervised learning are evaluated. Subsequently, the best GAN
settings are applied to slightly bigger smoke and fire datasets with newly labeled and
unlabeled images gathered from di�erent sources. The results will be compared to fully-
supervised models that are only trained with annotated data. In the end, the quality of
the segmentation results regarding the designated use in real-time fire fighting actions is
evaluated.

Limitations of this work are, that apart from rgb images, there is no additional data
like infrared imagery or spatio-temporal information obtained from video frames used to
predict the fire and smoke segmentations. Additionally, the use of very small training and
testing datasets together with a relatively small number of three validation runs for each
experiment should be considered when interpreting the results obtained in this thesis.

1.4 Firefront project

This work was developed at the Institute of Systems and Robotics (ISR) in Lisbon which
belongs to a consortium working on a system to support firefighting actions in Portugal,
namely the Firefront project [Noac].The project aims to develop a system based on
unmanned aerial vehicles (UAVs) and cameras aquiring visible and infrared imagery for
real-time detection and tracking of wildfires. This information will, for example, be used
in a graphical interface for firefighters that gives a broad and fast overview of the a�ected
areas and helps with planning the next firefighting actions or for predictive models when
combined with further information like meteorological data and georeferences. Another
important part of the project is the creation of a dataset of airborne sequences and
associated telemetry of real forest fire scenarios to support further research.

1.5 Thesis outline

Chapter 2 starts with a theoretical overview about the type of deep learning networks
used in this thesis. In Chapter 3, closely related works regarding the application of GANs
for semantic segmentation are going to be described in more detail. The methods used for
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the experiments done are then presented in Chapter 4. The obtained results are presented
and analysed in Chapter 5. In the end there is a summary and discussion about the main
results and about possible future improvements in Chapter 6.



Chapter 2

Theoretical Background

This chapter will introduce the basic concepts of Convolutional Neural Networks (CNNs)
and Generative Adversarial Networks (GANs), as these kinds of networks are the under-
lying components of the semi-supervised semantic segmentation method applied in this
work.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep neural network that are opti-
mized to work with complex input data such as images or audio. Most semantic segmen-
tation methods using deep learning are based on CNNs and additional modules.

CNNs have the ability to identify the underlying features of an image automatically and
in a hierarchical order. This ability distinguishes them from traditional image processing
methods that rely on handcrafted features such as colors and shapes that are defined by
a human with previously obtained domain knowledge. The definition of these features is
very di�cult and complex, as they need to be robust to variations, for example occlusions,
deformations, lighting conditions, scaling and viewpoints. An example of a feature hierar-
chy learned by a CNN is shown in Figure 2.1, where the low level features are detected in
earlier layers and the high level features in deeper layers of the network.

6
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Figure 2.1: An example of hierarchical features extracted by a CNN for human face detection,
adapted from [Fea].

An overview of an example architecture of a CNN is depicted in Figure 2.2 for a CNN
used for image classification. Characteristic are the subsequent layers of convolution with
non-linear processing units, namely activation functions, and pooling. In the case of a
classification task, fully-connected layers are added in the end. One of the first CNNs,
LeNet5, was already introduced in 1989 by LeCun et al. [Lec98] and consisted of only
five layers. Improvements in hardware and network structure have enabled the use of very
deep CNNs with more than 100 layers, such as ResNets [He16]. The details of CNN layers
are described in the following.

Figure 2.2: An exemplary overview of a CNN used for a classification task, adapted from
[Cnn].

2.1.1 Layers

To extract the features of an image, its spatial structure should be considered, because
image pixels that are spatially close to each other are more likely to be related to each
other. To preserve the spatial structure during deep learning, convolutional layers are
applied in CNNs. Convolutional operations contain an element-wise multiplication of the
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values of an image matrix with the values of a smaller filter kernel matrix, which slides
as a patch over the image. The filter matrices can have di�erent values, that are used
for example for the task of detecting edges within the patches of an image. During the
learning process of a CNN, the network learns what kind of features it needs to extract
by applying di�erent kinds of filters and assigning higher values to the important filters.
The convolution operation is defined as follows:

G[m,n]=(f ú h)[m.n]=
ÿ

j

ÿ

k

h[j, k]f [m ≠ j, n ≠ k], (2.1)

where G is the resulting feature map after the convolution and m and n are its row and
column indices. The input image is denoted by f and the filter matrix by h with m

and j as the the row and column indices of the filter. Figure 2.3 shows examples for
a one-channel convolution and a convolution over multiple input channels, which is the
case when using rgb images. Apart from the filter kernel type and size, there are two
additional parameters that define a standard convolution operation, which are padding
and stride. The stride denotes the distance of two consecutive filter positions while the
filter kernel slides over the image and has an influence on the output size of the resulting
feature map. Padding adds rows and columns of zeros to the outer sides of an input, so
that each element of the real borders of an input can be in the center of a filter kernel.
This is used to avoid information loss at the input border regions.

(a) (b)

Figure 2.3: An example of a convolution operation on one channel 2.3a and multiple channels
with zero padding 2.3b. Figures adapted from [Cnn].
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After applying a convolution, a bias value is added to the resulting value and these values
are passed through an activation function. A common activation function used in CNNs
is the ReLU function [Aga19] f(x) = max(0, x), which maps negative values to zero but
prevents the saturation of gradients in the positive dimension.

Convolutional layers are usually followed by a pooling layer, which applies a down-
sampling operation on the output feature maps. Downsampling is important to reduce
the computational load of processing the data and also helps to extract more prominent
features. By doing this, the spatial invariance of the feature maps should be kept, which
is why the pooling operation works, similar to the convolution operation, with filters of
a defined size and stride that slide over the feature maps. The most common pooling
operation is max pooling, where the maximum value of the feature map at the current
patch covered by the filter gets extracted. Another possible operation is average pooling,
where the average of all values covered by the filter is returned. Figure 2.4 shows an
example of both operations mentioned.

Figure 2.4: Examples of average and max pooling, adapted from [Cnn].

Convolution and pooling layers output high-level features of the input. When the task
of a CNN is classification, a fully-connected layer with an input of these features can be
used to output a probability of an image belonging to a specific class. This is usually done
by applying activation functions that output a probability between zero and one for each
possible class using the output of a fully-connected layer. A CNN for classification will
later be used in this thesis as an auxiliary network for semi-supervised learning within a
GAN, which will be described in more detail in the following sections.

When it comes to the task of semantic segmentation, the output of a CNN is supposed
to be a prediction of pixel-wise probabilities indicating whether a specific pixel of an
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input image belongs to a specific class. To achieve this, the feature maps that were
downsampled during the convolutional process of feature extraction need to be upsampled
again to match the original size of the input image and form a segmentation map. This
process of downsampling and upsampling is also called an encoder-decoder architecture,
for which an example is shown in Figure 2.5a.

(a)

(b)

Figure 2.5: Overall architecture of the encoder-decoder network used in [NHH15] in 2.5a.
The deconvolution network uses series of unpooling, deconvolution and rectification operations
to obtain a dense pixel-wise class prediction map of the input image. In 2.5b the visualization
of feature maps throughout the layers of transposed convolutions, where (a) is an input image
and (b) to (j) are outputs of consecutive deconvolution (b), (d), (f), (h), (j) and unpooling
layers (c), (e), (g), (i). This illustrates the type of information that is extracted throughout
the layers, as the deconvolution of earlier convolution layers adds improved class-specific shape
information whereas the deconvolution from small feature maps from late convolutional layers
hold class information without finer details. Figures adapted from [NHH15].

There are di�erent options to do the upsampling of feature maps. First approaches used
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bilinear interpolation and, optional, conditional random fields (CRFs) [KK12] as a post-
processing step on the segmentation map. A problem of this approach is that information
about small and fine objects could get lost in the process of down- and upsampling, if
the objects are smaller than the receptive field of a network. The receptive field is "the
size of the region in the input that produces the feature" [ANS19] and is, amongst others,
influenced by the filter kernel sizes and strides. There have been attempts to reduce the
problem of losing information throughout the layers, for example by using di�erent kinds
of skip connections between the layers to recover finer details from earlier layers in the
predictions. Examples using skip connections are DenseNets [Hua18], U-Nets [RFB15]
and ResNets [He16]. Another method is learnable upsampling, which is often referred to
as deconvolution or transpose convolution, combined with unpooling layers proposed by
Noh et al. [NHH15].

2.1.2 Training

A CNN is trained by using a loss function to calculate the error between its output and
ground truth labels or other references. The goal of the CNN is to minimize a loss function
by adapting the weights and filter kernels inside the layers to predict an output that causes
a lower loss value. The update of the weights and filter kernels is done with the help of
optimizers like stochastic gradient descent or Adam [Rud17]. The method of updating the
weights and filters of a CNN in a forward direction is called forward propagation. The
method of backpropagation based on a loss value is used to calculate the gradients from
the output to the input of a neural network using the chain rule. Figure 2.6 depicts the
directions of forward- and backpropagation.
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Figure 2.6: Forward- and backpropagation in CNNs, adapted from [Noaa].

2.1.3 Common regularization techniques

A common problem in deep learning is overfitting, where a trained network is too specified
on the data it was trained with and does not perform well when introduced to data it has
not seen before. To avoid this problem and train a model that is able to generalize well,
di�erent regularization techniques can be applied.

One of them is called dropout. At each training iteration it randomly selects nodes to
be deactivated during this iteration. As a result, the network does not always have all
nodes available for training and the complexity inside the layers is randomly reduced. This
temporal random reduction has positive e�ects on the ability of a network to generalize
[kF16]. An example depicting the removal of nodes in a neural network is shown in Figure
2.7. The dropout rate, which sets the percentage of nodes to be temporarily removed, is
a hyperparameter in neural networks.
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Figure 2.7: An example of a dropout operation applied in a neural network, adapted from
[kF16].

Another way to avoid overfitting is augmenting the training dataset. The more di�erent
data a network sees during training the easier it can generalize. Apart from manual data
augmentation with labeled data, there are methods to automatically augment training
data when dealing with images. Adding transformations that preserve annotations, such
as rotations, scaling, flipping and shifting to training images can improve the results of a
model [SK19].

Early stopping is another method used and tries to stop the training process before a
model overfits on the training data. To monitor when the point of overfitting is reached,
a training dataset is split into training and validation parts. The training part is used
to calculate the loss of the model and correct it, while the smaller validation dataset can
be used as a reference about how well the model is performing on data apart from the
training set. As soon as the loss of the validation dataset does not decrease anymore
while the loss of the training dataset still does, early stopping terminates the training.
The validation set is often also used to tune hyperparameters during training, which is
why it can not be considered as a true test set, but it can be an indicator to evaluate the
generalization ability of a model.

In the following, GANs are going to be introduced. GAN components are often CNNs.
The GAN for semantic segmentation used in this thesis also consists of a CNN for seg-
mentation and a CNN for classification which are connected to learn together.
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2.2 Generative Adversarial Networks

GANs belong to the field of Deep Generative Modeling. The goal of generative modeling
is to take input training examples from a data distribution and learn a model that
represents this distribution and is able to generate new examples of the distribution
learned. Originally, GANs take a low-dimensional input, like a random noise vector, and
learn its transformation to a desired data distribution. Ian Goodfellow et al. [Goo14] first
introduced the concept of GANs in 2014. The basic idea is to use two networks, where
one network generates an ouput which the other network takes as an input and rates the
quality of the generated input based on its own understanding. The two networks are
referred to as generator and discriminator, based on their respective roles. In Figure 2.8
a standard GAN network is depicted. It shows the inputs and outputs of generator and
discriminator for the task of generating new images belonging to a certain data distribution.
The discriminator is trained to learn, whether a certain input is coming from a real world
data distribution or was synthetically generated by the generator. The output of the
discriminator is in turn used to correct the generator. In this setting, the discriminator
takes a role that can be considered as a learned loss function for the generator.

Figure 2.8: Standard GAN architecture for image generation, extracted from [Cai20].

2.2.1 Training

Discriminator and generator are trained alternatingly to get better at their respective
task with the goal of outperforming the other network. In standard GANs, the networks
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are corrected by the binary cross-entropy (BCE) loss, which the discriminator wants
to minimize and the generator wants to maximize. It is therefore also referred to as a
minimax-loss LMinMax, which is described in Equation 2.2.

LMinMax=Ex[log(D(x))] + Ez[log(1 ≠ D(G(z)))], (2.2)

where D(x) is the output of the discriminator for a real data instance x, Ex and D(G(z)
the discriminator output for a fake data instance generated by the generator G. Ex and
Ez denote the expected values over all real data instances or over all generated inputs,
respectively. The higher the BCE loss is, the worse the discriminator is classifying between
real and fake inputs. Figure 2.9 shows a pseudo code example of the original GAN training
process.

Figure 2.9: Pseudo code of the training of the discriminator and generator with stochastic
gradient descent optimizer. The ’data generating distribution’ means the distribution of real
samples, for which the generator is trained to produce similar samples. Figure extracted from
[Cai20].

Ideally, the abilities of the generator and discriminator equally improve over the training
iterations, until the generator is able to produce perfect generations, which the discrimina-
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tor is not able to distinguish from real inputs anymore and will always output a probability
of 0.5 for both, generated and real samples. Figure 2.10 shows how an ideal training pro-
cess of a GAN would look like. In reality, this training dynamic is very hard to achieve,
because the abilities of the discriminator and generator usually do not stay on the same
level. This is mainly due to the fact that the discriminator has an easier task learning
to distinguish compared to the generator learning to generate. When the discriminator
improves too much, the function approximated by the BCE loss will contain flat regions
with gradients close to zero and the generator will not know how to improve. This is
why GANs in general are very di�cult to train and require extensive hyperparameter
optimization. To reduce some training problems like the vanishing gradient, di�erent
approaches have been suggested, where some will be introduced in the next sections.

Figure 2.10: An ideal training progress of a GAN, where the black dotted distribution is the real
data distribution sampled from x and the green distribution the generated distribution sampled
from z. The blue dotted line visualizes the discriminative distribution of the discriminator
which distinguishes between real and fake data. From (a) to (d) the generated distribution
gets closer to the real distribution, until they are not distinguishable anymore. Figure extracted
from [Cai20].

2.2.2 Methods to alleviate training di�culties

An essential task when using GANs is balancing out the abilities of the discriminator and
generator networks, where the discriminator usually has a tendency to be stronger. A
first approach was training the discriminator less frequently compared to the generator
[Cai20]. Consequently, another problem can arise, which is, that the generator learns to
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only produce a limited amount of very similar or the same samples that are successful in
fooling the discriminator. This dynamic is also referred to as mode collapse.

Another approach, suggested by Roth et al. [Rot17] is the addition of noise, like a
gaussian noise, to the inputs of the discriminator, to aggravate its learning progress.
Salimans et al. [Sal16] proposed the addition of noise in the beginning of the training
progress and slowly adding weaker noise during later training iterations or a one-sided
label smoothing. Salimans et al. also proposed a feature-matching loss, which will be
used in this work as well and explained in more detail in Chapter 3 and 4.

Arjovski et al. [ACB17] proposed an alternative to the traditional GAN training by using
a measure of the distance between two probability distributions, namely the earth-movers
distance, for the loss function. This GAN variant is called a Wasserstein GAN (WGAN)
and has the advantage, that it trains more stable than traditional GANs and in addition
yields a loss function that is actually correlated with the quality of the output of the
generator.In traditional GANs this does not have to be true, as the loss only measures how
good the generator is able to fool the discriminator, whereas the quality of the decisions
made by the discriminator is unknown. Because of this di�erence, the discriminator of a
WGAN is referred to as a critic, as it does not distinguish between real or fake inputs but
measures the distance between output features of the data distributions of generated and
fake data.

To conclude, the components of a GAN need to be balanced out carefully to achieve an
e�ective training progress. Since the introduction of GANs, there have been developed
many di�erent architectural variants for di�erent use cases. The following chapter will
focus on GANs used in the context of semantic segmentation tasks.
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State of the Art

This chapter will concentrate on recent work regarding semantic segmentation using GANs.
The works of Hung et al. [Hun18] and Mittal et al. [MTB19], that are closely related to
this thesis, will be described in more detail. There are two main strategies for using GANs
to benefit semantic segmentation. The first strategy is to use a GAN to produce new
training data to augment a dataset, which is then used for training a semantic segmentation
network. The other approach is to use a GAN directly to produce semantic segmentations
with the generator and to use the discriminator for evaluation of the segmentations of
labeled and unlabeled input images.

3.1 GANs for data augmentation

In the work of Ne� et al. [Nef] the authors use a GAN to augment training datasets
for medical image segmentation of lungs and also for the bigger segmentation benchmark
dataset Cityscapes [Cor16]. To do this, they use a GAN that is first trained to generate
image-segmentation pairs. They train the GAN until the quality of the generated image-
segmentation pairs does not further improve and then use the fully trained generator of
the GAN as an additionial input to a fully-supervised segmentation network based on a
U-Net [RFB15]. The generator is then used to produce an unlimited amount of synthetic
image-segmentation pairs "on-the-fly", which are, alongside real image-segmentation pairs,
used as an input for the U-Net.

18
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Figure 3.1 shows the components of the network described. The authors use a WGAN
with gradient penalty based on [Gul17]. For training the GAN, existing segmentation
maps and their corresponding images are concatenated along the channel axis, so that the
generator is trained to produce image-segmentation pairs and the discriminator is trained
to decide, whether a given image-segmentation pair is real or synthetic.

Figure 3.1: Overview of the GAN architecture for data augmentation by [Nef]. The dashed
lines and boxes denote steps and components that are only used during pre-training of the
GAN generator.Figure extracted from [Nef]

For the evaluation of their method, Ne� et al. [Nef] tried di�erent ratios of real and
synthetic data as input to the segmentation network and also trained the network together
with standard data augmentation methods like horizontal flipping and without. Their
results show a slight improvement when the network is trained with additional synthetic
data compared to using only standard data augmentation. But, as the authors write,
this slight improvement averaged over three data splits is not meaningful enough to
conclude that the data augmentation with a GAN is more beneficial than using standard
augmentation techniques. However, there is still an advantage of using GANs for data
augmentation, because it "does not require extensive data analysis to find out optimal
augmentation parameters" [Nef], as this is done by the GAN itself and therefore can reduce
fine-tuning e�orts. For further improvement of their method, the authors suggest trying
to increase the resolution and representation power of the GAN to be able to produce
more detailed synthetic image-segmentation pairs.
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3.2 Semi-supervised GANs for direct segmentation

Hung et al. [Hun18] proposed one of the first works considering semi-supervised learning
for semantic segmentation. Here, the generator outputs probability maps of semantic
labels given an input image and the discriminator learns to produce a spatial confidence
map, indicating the quality of the predicted regions, which is then used as a supervisory
signal for unlabeled training samples. Similar to that, other probabilistic graphical models
such as CRFs [KK12] often get used as a post-processing step. The advantage of using the
GAN method proposed by Hung et al. is, that it does not require an extra post-processing
module during testing and application of the trained segmentation model. Figure 3.2
shows an overview of the network.

Figure 3.2: Overview of the semi-supervised GAN architecture from Hung et al. The losses
shown are explained in more detail in the following. Figure adapted from [Hun18].

As the segmentation network they use a DeepLabv2 [Che17] framework with a pre-
trained ResNet-101 [He16] model as a backbone trained on the ImageNet [Den09] and
MSCOCO [Lin15] dataset. Due to memory constraints they do not use the multi-scale
fusion of DeepLabv2. The CRF post-processing is not applied either. The discriminator
is a fully convolutional network with five convolutional layers where the last layer is an
upsampling layer that rescales the output to the size of the input map. The networks do
not use batch normalization as it is unstable, when, like in this case, small batch sizes are
used.

During training, the generator and discriminator are updated jointly at each iteration,
where the discriminator is updated only based on labeled images and their predicted
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segmentation maps. Furthermore, the authors suggest a fully-supervised pre-training of
the networks "to prevent the model su�ering from initial noisy masks and predictions"
[Hun18] and start semi-supervised training afterwards.

For training the discriminator D, there are two possible inputs: segmentation prediction
maps from the generator or a one-hot encoded ground truth annotation map. The following
loss LD , which is similar to the standard binary cross-entropy loss used in traditional
GANs, is used for training the discriminator:

LD= ≠
ÿ

h,w

(1 ≠ yn)log(1 ≠ D(S(Xn))(h,w)) + ynlog(D(Y n)(h,w)), (3.1)

where yn = 0 if the training sample is a generated segmentation map from the generator
or yn = 1 if the sample is coming from the ground truth distribution. The letters h and
w denote the height and width indices of the input maps and S(Xn) and Y n are the pixel
values of the predicted segmentation map and the ground truth annotation map at the
current [h, w] pixel location for class c, respectively. The authors mention that there could
be a potential issue regarding the di�erences of the inputs, where the ground truth maps
hold one-hot probabilities with which the discriminator could easily detect whether the
probability maps come from the ground truth or not. Nevertheless, Hung et al. report
that they do not encounter this problem during training phase and speculate that the
reason is that they "use a fully-convolutional scheme to predict spatial confidence, which
increases the di�culty to learn the discriminator"[Hun18]. Additionally the ground truth
values were slightly di�used before being used as an input to the discriminator, but this
did not show any di�erence in the results.

For the training of the generator, di�erent supervisory methods were applied, depending
on whether the training sample used has an annotated ground truth map or is unlabeled.
For training with labeled samples, the losses Lce in Equation 3.2 and Ladv in Equation
3.3 are used.Lce is a spatial multi-class cross-entropy loss and Ladv is the typical GAN
adversarial loss using the output of the discriminator for predicted segmentation maps.

Lce= ≠
ÿ

h,w

ÿ

cœC

Y n
(h,w,c)log(S(Xn)(h,w,c)) (3.2)
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Ladv= ≠
ÿ

h,w

log(D(S(Xn))(h,w)) (3.3)

For generator training with unlabeled samples, the adversarial loss Ladv is applied as
well, as it only requires the output of the discriminator. In addition, Hung et al. use
the following loss Lsemi, where the discriminator produces a binarized confidence map of
trustworthy regions based on a threshold. This binarized confidence map is then used as
a ground truth to train with a masked spatial cross entropy loss. In Equation 3.4 I(.)
denotes the indicator function to decide, whether the discriminator output of a predicted
segmentation at location [h, w] D(S(Xn))(h,w,c) is bigger than a set threshold T semi. If
this condition is true, Ŷ n, a binarized confidence map, is generated with Ŷ n

(h,w,c) = 1 if
c = argmaxnS(Xn

(h,w,c)). The authors report, that a T semi between 0.1 and 0.3 worked
best for their case.

Lsemi= ≠
ÿ

h,w

ÿ

cœC

I(D(S(Xn))(h,w,c) > T semi) · Ŷ n
(h,w,c)log(S(Xn)(h,w,c)) (3.4)

Equation 3.5 summarizes all losses that are used for training the generator by trying to
minimize it.

Lseg = Lce + ⁄advLadv + ⁄semiLsemi, (3.5)

where ⁄adv and ⁄semi are weights to control the influence of their corresponding losses to
the total generator loss Lseg. The authors state that "it is crucial to choose a smaller
⁄adv than the one used for labeled data" [Hun18] when training with unlabeled samples
because of the risk of over-correcting the generator.

Hung et al. tested their approach with two benchmark datasets, namely PASCAL-VOC
[Eve09] and Cityscapes [Cor16]. They report an improvement of their results from 1.6%
to 3.3% mean intersection-over-union (mIoU) for the Cityscapes dataset and 3.5% to 4.0%
mIoU compared to their fully-supervised DeepLabv2 baseline and also report improved
results with respect to earlier approaches using semi- together with weakly-supervised
GANs [SSS17]. Their qualitative results, such as in Figure 3.3a show improvements
especially in the border regions of segmented objects. The table in Figure 3.3b shows the
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results of an ablation study considering the two losses used for semi-supervised learning
and the use of a fully convolutional discriminator. Considering these results, Ladv, Lsemi

and also the fully convolutional discriminator seem to have a positive influence.

(a) (b)

Figure 3.3: Visual example segmentations from Hung et al. in 3.3a and the results of an
ablation study for the PASCAL-VOC dataset with MSCOCO pre-training about the influences of
the semi-superived losses Ladv and Lsemi as well as the use of a fully convolutional discriminator
(FCD) against a discriminator that only outputs a single probability value in 3.3b. The data
amount means the ratio of labeled samples used for training. Figures extracted from [Hun18].

Based on the work of Hung et al. [Hun18], Mittal et al. [MTB19] developed a semi-
supervised GAN for semantic segmentation with several modifications and additions.
Opposed to Hung et al., they use a discriminator that outputs a single probability value
between 0 and 1 for the whole input image and not a fully convolutional one with an output
for every pixel. Furthermore, the inputs for the discriminator are either a concatenation of
a ground truth label map and the corresponding rgb image or of a predicted segmentation
map and the corresponding rgb image along the channel axis. Instead of the adversarial
loss Ladv, Mittal et al. use a feature-matching loss. They also do not pre-train the network
with full supervision and start semi-supervised learning at the first training iteration. In
addition to semi-supervised segmentation they also add a semi-supervised classification
branch to their framework. The classification branch outputs an image-wise classification
of objects present in an input image. It is then used to correct the segmentation output in
case there exists a segmented region of a class that was not classified by the classification
branch. Figure 3.4 shows an overview of the architecture.
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Figure 3.4: Overview of the GAN architecture from Mittal et. al., where the segmentation
GAN is the upper s4GAN branch and the classification GAN is denoted as MLMT Branch.
Figure extracted from [MTB19].

For training the discriminator of the segmentation GAN, the traditional GAN binary
cross-entropy loss is used similar to the one used by Hung et al. in Equation 3.1, but here,
Mittal et al. also use unlabeled training samples.

For the training of the segmentation generator with labeled images, the standard cross
entropy loss is applied. As Mittal et al. do not use a fully-supervised pre-training of the
segmentation GAN, they apply a self-training procedure with a threshold of 0.7 to balance
out the abilities of the generator and discriminator during training. This means that good
generator results for unlabeled images are picked out to be reused as a ground truth for
supervised training with cross-entropy loss. This self-training loss aims to prevent the
discriminator from becoming too confident too soon, as it generally learns faster than
the generator. As an alternative to the adversarial loss used by Hung et al., Mittal et
al. apply a feature-matching loss Lfm introduced in [Sal16]. Lfm, which compares the
discriminator outputs of an intermediate layer for a batch sampled from labeled training
data and a batch sampled from unlabeled training data. The proposed advantage of this
loss is that it compares actual features that the discriminator learned about the ground
truth and generated data distributions and not only a single output value. To summarize,
the training of the generator network of the segmentation branch is based on the following
combined loss LS:
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LS=Lce + ⁄fmLfm + ⁄stLst, (3.6)

where ⁄fm and ⁄st are weights to control the influence of their corresponding losses to LS.
The details of the particular losses will be displayed in the next chapter, as they will be
applied in this work as well.

Mittal et al. also tested their approach with the PASCAL-VOC [Eve09] and Cityscapes
[Cor16] datasets, among others. With their method they were able to achieve an improve-
ment over their baseline DeepLabv2 model as well as the previously mentioned work of
Hung et al. [Hun18]. The authors speculate that the reason for this might be that they
not only use labeled images to update the discriminator so their model is less prone to
overfitting on the labeled data given. In addition, they found it crucial for the stability to
train using the feature-matching loss and not the standard GAN adversarial loss, where
the aim is to directly maximize the output of the discriminator. Figure 3.5 shows some
of their results. As Table 3.5b shows there is especially an improvement over the method
of Hung et al. when no pre-training is applied, which is interesting for domains where
pre-training is not helpful.

(a) (b)

Figure 3.5: Figure 3.5a with results from Mittal et al. showing improvements over the
baselines of DeepLabv2 and the previously mentioned work of Hung et al. [Hun18] for the
PASCAL-VOC dataset and 3.5b comparing the results with and without pre-training with the
MSCOCO dataset. Figures extracted from [MTB19]
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To summarize, the approach of Ne� et al. using a GAN to augment an existing dataset
seemed to result in slight improvements, but the usage of semi-supervised GANs for direct
segmentation, as applied in the works of Mittal et al. [MTB19] and Hung et al. [Hun18],
yielded more promising improvements regarding the segmentation accuracy. Considering
these approaches, the work from Mittal et al. seems to result in higher improvements
compared to the work from Hung et al. Apart from the reasons mentioned earlier, another
factor could be that Mittal et al. use a concatenation of rgb images and the generated
segmentation map or ground truth as an input to the discriminator. The additional
information coming from the rgb image that was segmented could be important for the
evaluation of the segmentation quality by the discriminator.



Chapter 4

Methodology

For the matter of this thesis, the semantic segmentation of smoke and fire, a semi-
supervised GAN is applied. This approach has shown good results for training with
several benchmark datasets [MTB19] [Hun18]. The work from Mittal et al. [MTB19],
which was introduced in Chapter 3, was chosen to be the basis for this work. The reason
for choosing this basis is the improved performance with semi-supervised learning which
occurred especially when using a very small ratio of labeled training data in the whole
training dataset. As their method was tested with big benchmark datasets, the applica-
tion for small datasets might require some modifications which will be suggested in this
chapter.

4.1 Datasets

Two independent datasets for the segmentation of smoke and fire are used for training
and testing. In the following, both datasets will be described.

4.1.1 Fire

As the labeled fire dataset, a densely annotated, publicly available dataset for wildfire
detection developed by the Université de Corse Pasquale Paoli [Tou17], which will be
referred to as the "Corsican" fire dataset in the following, is used for this work. In addition

27
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to these labeled images there have been collected 416 unlabeled wildfire images from
Google and Bing image search. Table 4.1 characterizes both datasets. A significant
di�erence between the labeled Corsican dataset and the unlabeled dataset is that there
is a bigger portion of images from an aerial perspective in the unlabeled dataset. The
intention behind that is that the firefront project aims to segment aerial images and
through the introduction of these unlabeled images the model has the chance to capture
more information for the aerial perspective. Figure 4.1 shows examples of the dominant
perspectives of fire within the Corsican dataset and Figure 4.2 shows examples of aerial
perspectives added to the unlabeled dataset.

Fire labeled (Corsican) Fire unlabeled
Pixel ratio (fire/background) in % 22/78 -

Ground perspective / slightly elevated 577 295
Aerial perspective 15 121

Total number of images 592 416

Table 4.1: Details of the fire dataset.

Figure 4.1: Examples of the ground and slightly elevated perspectives of fire images belonging
to the Corsican dataset.

Figure 4.2: Examples with aerial perspectives from the unlabeled fire dataset.
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4.1.2 Smoke

To alleviate the problem of inaccurate, strict smoke borders, an "ignore-label" was added
to the annotations, where the smoke concentration is very low or if an area is not certainly
identifiable as smoke or non-smoke. This way of annotating was also applied in a small,
publicly available smoke database [Noad], whose images are also a part of the labeled
dataset used in this work. From the total of 200 labeled smoke images, 105 come from
the previously mentioned smoke database, 18 images are adapted from the Corsican
fire dataset and annotated for smoke, and 77 images were collected and annotated from
Google and Bing image searches. For more consistent labels, some of the 105 smoke
database images were re-labeled to match the labeling style of the other images. The
image areas annotated with the ignore-label are not considered in the calculation of losses
and evaluation metrics. This method of labeling is still subjective, but could possibly
avoid the confusion of the network during training in smoke border zones and yield more
reliable evaluation results. For the task of labeling, the tool DarwinV7 [Noae] was used.
In addition to the labeled images there are 148 unlabeled images collected from Google
and Bing image search. Table 4.2 characterizes the dataset used and figure 4.3 shows
example annotations with the ignore-label.

Smoke labeled Smoke unlabeled
Pixel ratio

(smoke/ignore-label/background)
in %

27/1/72 -

Ground perspective / slightly elevated 50 39
Aerial perspective 125 109

Non-smoke 25 -
Total number of images 200 148

Table 4.2: Details of the smoke dataset.
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Figure 4.3: Examples of the annotation of smoke images using white labels for smoke and
grey labels for uncertain areas that might be smoke and smoke borders.

4.2 Network Architecture and Implementation

The GAN architecture used in this work is based on the segmentation branch of the
GAN proposed by Mittal et al. [MTB19]. Figure 4.4 shows an overview of the network
components and possible inputs and outputs. The details of the training procedure will
be explained in Section 4.2.2.

Figure 4.4: Overview of the GAN components and their inputs and outputs used in this
work. The ü denotes the concatenation of ground truth or segmentation maps with their
corresponding rgb image along the channel axis. The generated segmentation map holds
probability values for each pixel belonging to a certain class. The discriminator output is a
probability between 0 and 1. The closer the output is to 1 the more confident the discriminator
is that the input is a ground truth segmentation. The intermediate output* denotes a vector
that is obtained before the last fully-connected layer of the discriminator. The architecture is
adapted from the segmentation branch in [MTB19].
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4.2.1 Implementation details

Mittal et al. made the Pytorch implementation of their semi-supervised segmentation
GAN [sud21] publicly available, so this implementation will be used as the basis for this
work.

Generator network

The segmentation network is a DeepLabv2 framework with a ResNet-101 network [He16]
as a backbone, which is pre-trained on the ImageNet [Den09] dataset. DeepLabv3+
[Che18], although being a more recent version of DeepLab, is not applied in this work,
because Mittal et al. note that "DeepLabv3+ is unstable in the low-data ’supervised only’
setting" [MTB19], which could impair the fair comparison between fully-supervised and
semi-supervised learning.

ResNet-101 is a deep network with 101 layers. To be able to learn with this number of
layers, the network uses skip connections to minimize the vanishing or exploding gradient
problem for very deep networks and to preserve information from previous layers. The
skip connections for ResNets are called residual blocks, whereas ResNet-101 uses a specific
bottleneck design, depicted in Figure 4.5a. Here, the output value of a previous block is
added to the output of the current block. Inside a residual block the convolutions with a
filter size of 1x1 are used to reduce the number of input feature maps [He16]. Figure 4.5b
shows, how the bottleneck blocks are concatenated with each other through the layers of
a default ResNet.
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(a) (b)

Figure 4.5: Figure 4.5a shows an exemplary bottleneck residual block for a Resnet and Figure
4.5b shows the architecture of a ResNet with subsequent residual blocks. Figures extracted
from [He16].

The DeepLabv2 model works with ResNet-101 as a basis, but uses a di�erent type of
convolution in deeper layers, namely atrous convolutions. Their purpose is to enlarge
the receptive field of the network, which allows considering a bigger context for the
classification decision of image regions. Atrous convolutions use upsampled filters with the
resulting gaps filled with zeros. In Figure 4.6a the e�ect of atrous convolution is illustrated,
where each output feature of a convolutional layer was a�ected by inputs from a wider
region on the input feature map, compared with standard convolution. Figure 4.6b shows
that atrous convolution does not require a previous downsampling and later upsampling
to produce a high resolution output feature map. In addition, DeepLabv2 uses a method
called atrous spatial pyramid pooling (ASPP), which can capture image information at
multiple scales and output this information to a feature map of a fixed size. Figure 4.7
visualizes ASPP. The standard DeepLabv2 additionally uses a multi-scale structure, which
means that it runs in parallel over di�erently downscaled images. Because the method
is computationally very expensive, it is not used in this implementation. Also the CRF
post-processing step is not applied in this work.
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(a) One-dimensional atrous convolution in the

lower image on a high resolution input feature

map compared to standard convolution in the up-

per image on a low resolution input feature map.

(b) Two-dimensional standard convolution with

down- and upsampling on the top pipeline with

blue arrows compared to atrous convolution fol-

lowing the red arrow pipeline.

Figure 4.6: Atrous convolution in DeepLabv2. "Rate" denotes the distance of the original
filter kernel elements with zero filled gaps in between. Figures extracted from [Che17].

Figure 4.7: Atrous spatial pyramid pooling, extracted from [Che17].

Table 4.3 shows the details of the segmentation network layers. The input size is 312x321,
to which input images are cropped. As a standard data augmentation, horizontal flipping
is applied. The layer groups conv4 and conv5 use atrous convolution with a rate of 2 and
4, respectively. After the ASPP, an upsampling operation with bilinear interpolation and
softmax activation is performed on the output to match the size of the input image. To
obtain a binary segmentation mask for evaluation, an argmax funtion is applied to the
softmax output.
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Layer group Filter kernel size, number of filters Number of ResNet blocks Stride
conv1 7x7x64 - 2

3x3 max pooling 2
conv2 {1x1x64, 3x3x64, 1x1x256} 3 2
conv3 {1x1x128, 3x3x128, 1x1x512} 4 2
conv4 {1x1x256, 3x3x256, 1x1x1024} 23 1
conv5 {1x1x512, 3x3x512, 1x1x2048} 3 1

Atrous spatial pyramid pooling (rate=6,12,18,24)

Table 4.3: Details of the segmentation network layers.

Discriminator network

The discriminator network is a standard convolutional binary classification network. Table
4.4 shows the details of the network layers. Except the last layer, each convolution layer is
followed by a Leaky-ReLU [Xu15] activation function parametrised by 0.2 and a dropout
layer with a dropout rate of 0.5. Mittal et al. note that this dropout rate was "crucial
for stable GAN training" [MTB19]. After the fully-connected layer, a sigmoid function is
applied to output a probability between 0 and 1.

Layer Filter kernel size, number of filters Stride
conv1 4x4x64 2
conv2 4x4x128 2
conv3 4x4x256 2
conv4 4x4x512 2

Global average pooling
Fully-connected layer

Table 4.4: Details of the discriminator network layers.

4.2.2 Training procedure

The discriminator and generator are trained alternatingly at each iteration by calculating
the losses described in the following subsections and updating the learnable weights of the
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networks.

Discriminator

For training the discriminator, the standard BCE-loss, as it is proposed in the original
GAN paper [Goo14], is applied. Equation 4.1 describes the discriminator loss LD, where
E(x(l),y(l)) denotes a batch of rgb images and ground truth segmentation maps sampled
from the labeled training data distribution and Ex a batch of rgb images sampled from
the labeled or unlabeled training data distribution. D(y(l) ü x(l)) is the output of the
discriminator D for the input of the ground truth segmentation map y(l) concatenated
with the corresponding rgb image x(l). D(S(x) ü x) is the output of D for the generated
segmentation map by the segmentation network S concatenated with the corresponding rgb
image x, where x can be samples from the labeled or unlabeled training data distribution.
Figure 4.8 illustrates the inputs and outputs involved for calculating LD.

LD=E(x(l),y(l))[logD(y(l) ü x(l))] + Ex[log(1 ≠ D(S(x) ü x))] (4.1)

Figure 4.8: GAN components involved to compute the discriminator loss LD. The ü denotes
the concatenation of ground truth or segmentation maps with their corresponding rgb image
along the channel axis.

Generator

The generator uses di�erent losses, depending on whether the input image comes from
the labeled or unlabeled training data distribution. For labeled images, the standard
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cross entropy loss in Equation 4.2 is applied, where y¸ is the value of the ground truth
segmentation map at location (h, w, c) and S(x¸)(h, w, c) is the generated segmentation
mask from the segmentation network. Figure 4.9 illustrates the cross-entropy loss.

Lce= ≠
ÿ

h,w,c

y¸(h, w, c)log(S(x¸)(h, w, c)), (4.2)

Figure 4.9: GAN components involved to compute the cross-entropy loss Lce for training
with samples coming from the labeled data distribution.

To calculate the loss for unlabeled training samples, two di�erent losses are applied.
The first one adopts a self-training approach, where generated segmentation maps that
are able to fool the discriminator into thinking that they come from the ground truth
data distribution are reused as pseudo ground truth segmentation maps to calculate the
cross-entropy loss Lce. The pseudo ground truth segmentation maps are obtained by
applying an argmax function to the generated segmentation map. The threshold that
decides whether a generated segmentation map is good enough to be reused as a ground
truth is a hyperparameter in the training process, which is set to 0.7 in the work of Mittal
et al. The intention behind the self-training loss is to encourage the segmentation network
to predict segmentation maps that are able to fool the discriminator and balance out
the training dynamics, where the discriminator tends to learn faster than the generator.
Figure 4.10 illustrates the self-training loss.
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Figure 4.10: GAN components involved to compute the self-training loss Lst for training with
samples coming from the unlabeled data distribution, t-st denotes the self-training threshold.

The second loss that is used for unlabeled training samples is the feature-matching
loss, originally from [Sal16]. Equation 4.3 describes this loss, where E(x(l),y(l)) denotes a
batch of training samples from the labeled training data distribution and Ex(u) is a batch
of rgb images sampled from the unlabeled training data distribution. Dk(.) denotes an
intermediate output of the discriminator after the last convolutional layer with global
average pooling before the fully-connected layer is applied. The intermediate output is
calculated for labeled training images concatenated with their corresponding ground truth
y(l) ü x(l) and unlabeled samples with their corresponding generated segmentation map
S(x(u))üx(u). Because the intermediate output holds a more detailed feature information
about the input, the loss is called feature-matching loss, as it computes the di�erence
between samples coming from the ground truth and unlabeled samples with generated
segmentation maps. In Figure 4.11 the components involved for Lfm are illustrated.

Lfm = ||E(x(l),y(l))[Dk(y(l) ü x(l))] ≠ Ex(u)[Dk(S(x(u)) ü x(u))]|| (4.3)
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Figure 4.11: GAN components involved to compute the feature-matching loss Lfm. The
intermediate output* is the output vector after the 4th convolutional layer and global average
pooling of the discriminator.

4.3 Experiments

The goal of the following experiments is to evaluate whether a semi-supervised GAN,
as described before, is applicable for the task of smoke and fire segmentation when
using only very small labeled training datasets and if there are advantages compared to
fully-supervised training. As the baseline of the experiments, the work from Mittal et
al. [MTB19], was applied to big benchmark datasets like PASCAL-VOC [Cor16] and
Cityscapes [Cor16], the GAN might need several modifications to perform well for the
use case of this thesis. For the first three experiments only the Corsican fire dataset is
used for training and split into labeled and unlabeled parts. This is done to avoid an
interfering influence of training samples collected from other sources that might be too
di�erent when comparing fully-supervised with semi-supervised training. The insights
obtained by training with this sanity check fire dataset will then be applied to smoke and
fire datasets that use all training images available in the last experiment. The models for
the segmentation of smoke and fire are trained separately, so that each model specialises
either on the detection of smoke or on the detection of fire.
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The experiments were conducted using a NVIDIA GeForce RTX 2080 Ti GPU with
12GB memory, CUDA version 10.2 and Pytorch 1.5.1.

For each of the following experiments the results will be computed for three random
dataset splits. Each model is trained until 8000 training iterations with a batch size of
4.

4.3.1 Optimization of hyperparameters

GANs have shown to be hard to train because of training instabilities and their sensitivity
to hyperparameters, especially when applied to di�erent domains of training data. This is
why di�erent hyperparameter settings will be tested against the original baseline settings.
Mittal et al. [MTB19] especially emphasized the role of the self-training and feature
matching loss weights, ⁄st and ⁄fm, and the threshold for the self-training loss in the
calculation of the total generator loss LS in Equation 4.4 as important for balancing
out the abilities of generator and discriminator. This is why di�erent values of these
hyperparameters are tested. For these experiments, the Corsican dataset is split as shown
in Table 4.5.

LS=Lce + ⁄fmLfm + ⁄stLst, (4.4)

Number of train images Number of test images
labeled unlabeled

52 364 176

Table 4.5: Dataset split for hyperparameter optimization.

4.3.2 Fully-supervised pre-training

Mittal et al. [MTB19] did not adopt the fully-supervised pre-training approach suggested
by Hung et al. [Hun18]. They speculate that this method leads to overfitting of the
discriminator to the labeled training data distribution. This e�ect is even stronger,
because the discriminator is only trained with labeled data, even after the beginning
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of semi-supervised learning of the generator. On the other hand, Hung et al. [Hun18]
use the fully-supervised pre-training to gain training stability during the first training
iterations. In this experiment the goal is to test, if a shorter pre-training phase than
the one proposed by Hung et al. and the subsequent training of the discriminator with
labeled as well as unlabeled samples can be beneficial for the training stability and balance
between discriminator and generator, without the discriminator overfitting too much on
the labeled training samples. To do so, the results of a fully-supervised pre-training until
a certain starting point of semi-supervised training from 25, 500, 1000, 1500 and 2000
iterations will be compared. Figure 4.12 visualizes the di�erence between the previously
mentioned works and this approach.

Figure 4.12: Starting points of semi-supervised learning (orange dot) of the works of Mittal
et al. [MTB19], Hung et al. [Hun18] and this approach. G and D denote the generator
and discriminator, respectively. The blue line denotes fully-supervised learning with training
samples from the labeled training data distribution and the orange line denotes semi-supervised
learning with both, the unlabeled and labeled training data.

After having obtained the results of hyperparameter optimization and fully-supervised
pre-training, di�erent combinations of these parameters will be evaluated, as they are
likely to be interdependent.

4.3.3 Comparison of di�erent labeled-ratios

To analyse the e�ect of semi-supervised learning related to di�erent ratios of labeled and
unlabeled training images, experiments with labeled-ratios of 2.5%, 5%, 12.5% and 50% are
performed. Mittal et al. [MTB19] reported an increasing positive e�ect of semi-supervised
learning for low labeled-ratios when using big datasets. This experiment wants to test,
whether this relation is also true for a small dataset like the Corsican dataset. Table 4.6
shows how the dataset is split for each labeled-ratio.
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Labeled-ratio in % Number of train images Number of test images
labeled unlabeled

2.5 8 408 176
5 20 396 176

12.5 52 364 176
50 208 208 176
100 416 - 176

Table 4.6: Data splits of the Corsican dataset for di�erent labeled-ratios.

4.3.4 Training with full size datasets

With the conclusions made from the previous experiments with the Corsican sanity check
dataset, the best settings are applied on the fire and smoke datasets using all available
labeled and unlabeled images. This is done to see whether the e�ects of semi-supervised
learning are comparable to the e�ects on the Corsican dataset alone when using datasets
with images from many di�erent sources. Furthermore it would be beneficial to use all
available labeled images for fully-supervised learning. The datasets are split as shown in
Table 4.7.

Number of train images Number of test images
labeled unlabeled

Fire dataset 416 416 176
Smoke dataset 140 148 60

Table 4.7: Dataset splits of smoke and fire when using the full size datasets.
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Evaluation

5.1 Evaluation Metrics

To evaluate the segmentation performance of the network tested, two common metrics are
applied. The first one is the intersection over union (IoU) and the second the F1-score,
which is the harmonic mean between precision and recall. The advantage of IoU over
simple pixel accuracy is that it takes into account class imbalances in the dataset, as the
portions of smoke and fire pixels with respect to the number of background pixels are not
equal.

The IoU is calculated as follows:

IoU = Area of overlap

Area of union
= TP

(TP + FP + FN) , (5.1)

where TP , FP and FN are the number of true-positive, false-positve and false-negative
classifications of pixels for a class, respectively.

The precision indicates how accurate the true positive predictions are with respect to
all positive predictions. The higher the precision the less false positives are predicted by
a model.

Precision = TP

TP + FP
(5.2)

42
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On the other hand, the recall indicates how many true positive predictions out of the
actual number of positive class pixels a model is able to find. It is calculated as follows:

Recall = TP

TP + FN
. (5.3)

As for the segmentation of smoke and fire, both metrics, recall and precision, are equally
important, so the F1-score as their trade-o� is applied as well. IoU and F1-score are very
similar, but the F1-score does not penalise single instances of bad classification as much
as the IoU.

F1 = 2TP

2TP + FP + FN
(5.4)

Another measure that will get used is the comparison of the number and size of connected
components between ground truth segmentation maps and predicted segmentation maps.
Knowing how many areas of a certain size are predicted, compared to the statistics of
the ground truth, could give further insight about the segmentation characteristics of a
model.

5.2 Results

5.2.1 Hyperparameter optimization and fully-supervised
pre-training

Table 5.1 shows the mean IoU (mIoU) results for fire when training the GAN with the
Corsican fire sanity check dataset with a 12.5% labeled-ratio for di�erent hyperparameter
settings. For each setting the results are averaged over three random data splits. The
fully-supervised baseline of these data splits, which is only trained with the 12.5% labeled
images of each split, reaches a mIoU of 86% with a standard deviation of 0.6. Table 5.2
shows the mIoU results for fire with di�erent starting points of semi-supervised learning.
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Hyperparameter Value mIoU fire in % Standard deviation

0.6 85 1.1
0.7 85 1.4
0.8 84 1.3

Self-training loss weight

1.0* 85 0.9
0.4 87 1.1
0.5 88 0.8
0.6 85 0.9

Self-training threshold

0.7* 85 0.5
0.1* 85 1.2
0.2 87 0.9
0.3 86 0.6

Feature-matching loss weight

0.4 87 0.7

Table 5.1: Results for di�erent hyperparameter settings for the Corsican dataset with a
labeled-ratio of 12.5%. The mIoU results reaching a higher value than the fully-supervised
baseline are denoted in bold. The values annotated with * are the original settings used by
Mittal et al. [MTB19].

Starting point of

semi-supervised learning

(training iterations)

mIoU fire in % Standard deviation

0* 85 0.5
25 86 0.6
500 87 0.6
1000 88 0.4
1500 86 0.5
2000 85 0.8

Table 5.2: Results for di�erent starting points of semi-supervised learning for the Corsican
dataset with a labeled-ratio of 12.5%. The mIoU results that reach a higher value than the
fully-supervised baseline are denoted in bold. The values with * are the original settings used
by Mittal et al. [MTB19].

Noticeable is that the semi-supervised training with original parameter settings from
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Mittal et al. [MTB19] yield a slightly worse result of 85% mIoU compared to fully-
supervised training with only the labeled data portion of 12.5% with an mIoU of 86%. On
the other hand, the semi-supervised method achieves slightly better results, when either
the self-training threshold is lowered, the feature-matching loss weight is increased or if
the GAN is trained fully-supervised for the first 500 or 1000 iterations. This could indicate
that, with the original settings, the discriminator is much stronger than the generator and
the generator might not be able to catch up with its progress. To see how the test results
change along the training process, Figures 5.1 and 5.2 show the results for the first data
split of each parameter setting at certain checkpoints during training.

Figure 5.1: Test IoU fire results over training iterations for data split 1.
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Figure 5.2: Test IoU fire results over training iterations for data split 1 after di�erent starting
points of semi-supervised learning.

The following paragraphs will discuss the possible reasons for each hyperparameter
change that resulted in a better mIoU for this experiment.

A lower self-training threshold of 0.5 accepts generator segmentation predictions that
are still able to fool the discriminator, but not as good as segmentation predictions with a
discriminator output of originally 0.7. If the generator is not able to produce segmentation
predictions higher than the original self-training threshold, the self-training loss is not
applied and the generator does not receive a helpful learning signal from the discriminator.
Lowering the self-training threshold could be a way for the generator to gain more helpful
correction from the discriminator. When the definition of a good segmentation result
is lowered from 0.7 to 0.5, the weaker generator has a higher chance to produce good
segmentation maps and benefit from the self-training loss.

A higher feature-matching loss weight emphasizes the influence of the feature-matching
loss, which corrects the generator to produce segmentation maps that have similar feature
statistics as the ground truth segmentation maps. If the discriminator learned a good
feature representation of the ground truth segmentation maps, the feature-matching loss
is a valuable input for the slower learning generator.
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The later starting point of semi-supervised learning seems to stabilize the generator
and discriminator with fully-supervised training, which can then refine the segmentation
quality with semi-supervised learning. Table 5.2 shows that there is also a point, at 1500
and 2000 iterations, when the later start of semi-supervised learning has no positive e�ect
on the results anymore. This could be due to overfitting of both networks on the labeled
training dataset, which is what Mittel et al. [MTB19] warned about with respect to the
later semi-supervised start applied by Hung et al. [Hun18]. So it seems to be important
to not train fully-supervised for too long when the labeled training data is scarce.

As some of the changed hyperparameter settings resulted in a slight improvement of the
semi-supervised fire mIoU, combinations of those settings were tested in order to see if
these combinations could have an even higher positive impact. The combinations tested
were a later start of semi-supervised learning with di�erent self-training thresholds, a
higher feature-matching loss weight, and combinations where these parameters change
their values at di�erent iterations to possibly adapt to the changing abilities of the
discriminator and generator during training. The results for the combinations tested did
not further improve the mIoU. In Appendix A the test mIoU results of each parameter
combination over the training iterations are shown for the first data split.

For the next experiments, a hyperparameter setting was chosen as an ’optimized’ semi-
supervised version. The self-training threshold of 0.5 and the later start of semi-supervised
learning at 1000 iterations both lead to a mIoU of 88% and, looking at the results over
the training iterations in figures 5.1 and 5.2, both do not show strong instabilities of
results during the training process. Their combination did not further improve the results.
Considering the standard deviation of each result, the later start of semi-supervised
learning has a lower standard deviation of 0.4 compared to 0.8. Because a lower variance
of the results is more favourable, it was chosen to be the ’optimized’ parameter setting.

Figures 5.3 , 5.4 and 5.5 show some qualitative results of the segmentations comparing
the fully-supervised baseline and semi-supervised learning with the optimized setting with
the later starting point of 1000 iterations.
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Figure 5.3: Examples of good segmentations from fully-supervised and semi-supervised
(optimized) training for the 12.5% labeled-ratio Corsican fire dataset.

Figure 5.4: Examples of segmentations for the 12.5% labeled-ratio Corsican fire dataset
where semi-supervised (optimized) training detected less false-positive regions compared to
fully-supervised training.
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Figure 5.5: Failure modes for both, fully-supervised and semi-supervised training.

Noticeable is that fully-supervised learning seemingly detected more false-positive areas
compared to semi-supervised learning. Some examples of this phenomenon are shown in
Figure 5.4. An attempt to describe this di�erence quantitatively is the comparison of
the number and size of connected components in the ground truth, semi-supervised and
fully-supervised segmentation maps. If fully-supervised learning detects more and mostly
small false-positive areas apart from the flame, the segmented components should be more
numerous and smaller compared to the segmented components of semi-supervised learning.
Table 5.3 shows how many connected components were found in the segmentation maps
of each method. Because the numbers for fully-supervised and semi-supervised learning
were very high, a morphological closing operation was applied on the segmentation maps,
to eliminate scattered predictions where the unique components are so close to each other
that they would belong semantically together. On the other hand, false-positive areas
with a higher distance to the flame still continue to be an individual area. An example is
shown in Figure 5.6 .
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Figure 5.6: Example of the morphological closing operation applied on the segmentation maps
of fully-supervised and semi-supervised results. (a) is the original image, (b) the ground truth
segmentation, (c) the fully-supervised segmentation, (d) the fully-supervised segmentation
after morphological closing, (e) the semi-supervised segmentation and (f) the semi-supervised
segmentation after morphological closing.

After the post-processing with morphological closing, the numbers of connected compo-
nents for both methods are lower, while the semi-supervised approach is a bit closer to the
ground truth. The boxplots in Figure 5.7 compare the distributions of segmented areas
with regard to their size. Fifty percent of the areas are relatively small for both methods,
but the median for semi-supervised learning is slightly higher than the median using fully-
supervised learning, which indicates that the fully-supervised results contain slightly more
small areas apart from a flame after applying the morphological closing operation. Also
the values until the 75th percentile and the maximum of the boxplots shown are di�erent,
where the fully-supervised values are smaller than the semi-supervised ones which are a
little closer to the distribution of the ground truth values. As the number and sizes of
connected components are only computed for the test results of the first training data split,
these results are not statistically significant but might explain better a possible di�erence
between semi-supervised and fully-supervised segmentation results apart from the slight
improvement of 2% for mIoU in the quantitative results. For completeness, the mIoU
results after the morphological closing operation are slightly better for semi-supervised
learning with 88.7% and slightly worse for fully-supervised learning with 85.6%.
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Number of connected components for fire

Ground truth Fully-supervised Semi-supervised

Without morphological closing 438 3691 3196
After morphological closing 705 591

Table 5.3: The numbers of connected components found in the ground truth segmentation
maps and after fully-supervised and semi-supervised learning. Results shown for a 12.5%
labeled-ratio of the fire dataset without and with morphological closing as post-processing
step.

(a)

(b)

Figure 5.7: Boxplots for area sizes of fire comparing the ground truth with fully-supervised
and semi-supervised learning with a labeled-ratio of 12.5%. Subfigure 5.7a shows the results
without a morphological closing operation applied to the segmented areas and subfigure 5.7b
shows the results after a morphological closing.
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5.2.2 Di�erent labeled-ratios

The results for mIoU, precision, recall and F1-score for fire compared at di�erent labeled-
ratios are shown in Figure 5.8 . Similar to the results of Mittal et al. [MTB19], the positive
e�ect of semi-supervised learning to the mIoU is more significant when the labeled-ratio
is low. Noticeable is that with semi-supervised learning the precision is more likely to be
higher and the recall is more likely to be lower than for fully-supervised learning, whereas
their trade-o�, the f1-score, is very similar. This indicates that, in this case, the semi-
supervised models are better at predicting less false-positives while the fully-supervised
models are better at finding more true-positives. This is relevant, if the significance of
one of those metrics is more important than the other. In the case of fire segmentation
used in real-time fire fighting situations, both metrics are in general equally important
and it can not be concluded, that one method is more suitable than the other for this use
case.

Figure 5.8: Fire mIoU results comparing fully-supervised learning, semi-supervised learning
with original hyperparameter settings from Mittal et al. [MTB19] and semi-supervised learning
with an optimized starting point at 1000 training iterations for di�erent labeled-ratios.

5.2.3 Results for training with full size datasets

Using the full fire dataset with all available labeled images for fully-supervised learning
and additionally the collected unlabeled images for semi-supervised learning, the following
results in Table 5.9 were obtained. The di�erences between semi-supervised and fully-
supervised learning are very small in this setting with respect to the evaluation metrics. A
possible reason could be that the images used for testing belong to the Corsican dataset,
which has a much smaller ratio of areal fire images compared to the unlabeled fire dataset.
This is why it could be interesting to test whether the semi-supervised model is better at
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segmenting aerial fire images compared to the fully-supervised model. To do so, a test
dataset with enough labeled aerial fire images would be required.

Similar to the previous results using the Corsican sanity check dataset, a later start of
semi-supervised learning shows an improvement compared to the original settings applied
by Mittal et al. [MTB19] for bigger benchmark datasets. Also the relations of the numbers
and sizes of connected components for semi-supervised and fully-supervised learning in
Table 5.4 and Figure 5.13 show a similar behaviour as in the previous experiment with a
labeled-ratio of 12.5% .

Figure 5.9: Fire results for a 50% labeled-ratio using the full fire dataset averaged over 3
random data splits. The black lines in top of the bars denote the standard deviation.

Number of connected components for fire

Ground truth Fully-supervised Semi-supervised

Without morphological closing 544 2188 2156
After morphological closing 793 721

Table 5.4: The numbers of connected components found in the ground truth segmen-
tation maps and after fully-supervised and semi-supervised learning. Results shown for
a 50% labeled-ratio of the full fire dataset without and with morphological closing as a
post-processing step.
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(a)

(b)

Figure 5.10: Boxplots for area sizes of fire comparing the ground truth with fully-supervised
and semi-supervised learning with a labeled-ratio of 50% using the full labeled fire dataset and
unlabeled images from additional sources. Results are shown for the first training data split.
Subfigure 5.10a shows the results without a morphological closing operation applied to the
segmented areas and subfigure 5.10b shows the results after a morphological closing.

Figures 5.11 and 5.12 show examples of segmentations when the models were trained
with the full size fire dataset. More examples can be found in Appendix B. A common
problem is the confusion of fire with bright yellow, orange or red objects close to a flame.
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Figure 5.11: Example segmentations for fire using the full size dataset.
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Figure 5.12: Example failure modes for fire using the full size dataset.

For the segmentation of smoke, the following results in Figure 5.13 were obtained. Here,
the improvement from fully-supervised learning only to semi-supervised learning with
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additional images is a bit higher compared to the results with the full size fire dataset.
This might be due to the higher portion of aerial images in the labeled smoke dataset,
which is used for testing. Through the additional unlabeled training images, which contain
mostly aerial perspectives of wildfire smoke, the semi-supervised model has seen more
di�erent images with this perspective which could explain the slightly better results of
1.2% mIoU and 1.6% F1-score.

Figure 5.13: Smoke results for a 50% labeled-ratio using the full smoke dataset averaged
over 3 random data splits. The black lines on top of the bars denote the standard deviation.

In Figure 5.14 and Table 5.5 the relation of sizes and numbers of connected components
of the first training data split show a similar behaviour to the two other results for the
Corsican fire sanity check dataset and the full size fire dataset.

Number of connected components for smoke

Ground truth Fully-supervised Semi-supervised

Without morphological closing 151 1868 1462
After morphological closing 294 287

Table 5.5: The numbers of connected components found in the ground truth segmen-
tation maps and after fully-supervised and semi-supervised learning. Results shown for
the 50% labeled-ratio of the full smoke dataset without and with morphological closing
as post-processing step.
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(a)

(b)

Figure 5.14: Boxplots for area sizes of smoke comparing the ground truth with fully-supervised
and semi-supervised learning with a labeled-ratio of 50%. Subfigure 5.14a shows the results
without a morphological closing operation applied to the segmented areas and subfigure 5.14b
shows the results after a morphological closing.

The following figures show some segmentation examples for smoke. In Figure 5.16
examples of failure modes that were observed are depicted. Problems arise for example,
when there are objects behind semi transparent smoke. Also, small smoke areas are
sometimes not detected and greyish objects like stones or dry grass are confused as
smoke.
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Figure 5.15: Example segmentations for smoke.
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Figure 5.16: Example failure modes for smoke.

Summarizing the results of the previous experiments, the applied semi-supervised GAN
has turned out to be very sensitive to the hyperparameters tested. Compared to being
used for the training of big benchmark datasets, the training with smaller, specific datasets
like the ones for smoke and fire, seems to require parameter settings that stronger balance
out the abilities of the discriminator and generator. A strategy that worked well with
both datasets was a short, fully-supervised pre-training of the discriminator and generator
until 1000 iterations, which lead to a slight improvement of mIoU compared to fully-
supervised learning only. Considering the qualitative segmentation results, there seems
to be a tendency of less predicted false positive areas apart from a flame when using
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semi-supervised learning. Common failure modes for fire segmentation are reflections of
fire, the sun behind smoke and bright yellow, orange or red objects close to an actual flame.
For the segmentation of smoke, small smoke areas are problematic, as they sometimes do
not get detected or objects with a similar colour like stones or dry grass are misclassified
as smoke. In general, the advantages of semi-supervised learning have shown to be more
prominent when using low labeled-ratios, even for the small smoke and fire datasets used
in this work.



Chapter 6

Conclusion

The objective of this work was to evaluate the potential benefits of applying a semi-
supervised GAN for semantic segmentation using only small labeled training datasets
together with additional unlabeled images of smoke and fire. As GANs are known to be
hard to train and sensitive to hyperparameters, di�erent hyperparameter settings were
tested when applied to the GAN proposed by Mittal et al. [MTB19]. For the same
purpose of more training stability and establishing a balance between the discriminator
and generator, a short, fully-supervised pre-training was tested as well. Some changes in
hyperparameter settings and the fully-supervised pre-training yielded a slight improve-
ment of the mIoU for fire over the fully-supervised baseline and also over the original
hyperparameter settings by Mittal et al., when training with the Corsican fire dataset.

Based on that, the fully-supervised pre-training was chosen to be applied as an optimized
semi-supervised GAN version to the training with di�erent labeled-ratios of the Corsican
fire dataset. Subsequently it was applied to slightly bigger fire and smoke datasets using
di�erent sources of training images. For all experiments, the optimized, semi-supervised
method was able to achieve a small improvement considering the quantitative metrics,
whereas the improvement when training with very small labeled-ratios was more prominent.
The results obtained by the experiments indicate that a semi-supervised GAN can be
beneficial for the task of smoke and fire segmentation, especially when there is not much
labeled training data, but a larger amount of unlabeled data, available.

A possible advantage of semi-supervised learning regarding the segmentation of smoke
and fire regions from aerial perspectives could be that available fire or smoke datasets
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containing images from a ground perspective could still be used as a basis for fully-
supervised learning which then can be refined using unlabeled images from an aerial
perspective.

Finding the best hyperparameter settings for the GAN, which work well with a di�erent
dataset, required an extensive hyperparameter search, which is one of the downsides
of using a GAN. Therefore, the short, fully-supervised pre-training could be a simple
option for more training stability, as this method worked well for the smoke as well as
the fire dataset used in this work. Another approach that could lead to better training
stability is the use of a Wasserstein GAN, which was not tested in this work. However,
Wasserstein GANs have shown to be superior in many cases, especially the recent version
of a Wasserstein GAN with gradient penalty [Gul17].

Considering possible improvements of the segmentation network used in the implemen-
tation of this work, a more recent version of DeepLab, DeepLabv3+ [Che18], could be
beneficial, as it uses more advanced down- and upsampling techniques. This is especially
important for the segmentation of small smoke areas, as these sometimes do not get de-
tected with the network applied, which could be caused by information loss within the
layers of the network.

In the future, the Firefront project aims to acquire a wildfire dataset of aerial imagery
containing rgb and infrared data in images and video sequences. This kind of data could
lead to an improvement in the accuracy of segmentations, as false positive segmentations
can be prevented more easily when additional information like the temperature and the
spatio-temporal behaviour of objects is available. It might also be beneficial to combine
di�erent approaches that were and are investigated within the Firefront project to find a
suitable solution for smoke and fire segmentation.
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Hyperparameter combinations

Figure A.1: The hyperparameter combinations tested for the Corsican fire dataset which did
not result in further improvements of the mIoU of fire.
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Appendix B

Additional qualitative results

Figure B.1: Example segmentations for fire after using the full size dataset for training.
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Figure B.2: Example segmentations for smoke after using the full size dataset for training.
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